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Problem set 6: Geostrophic balance 
Due date: November 5th, 2008 

1. Analysis of the wind at 500 mb. Download the latest 500mb analysis of geopo­
tential height and wind. See appendix for instructions. Choose a point in the 
ow, estimate the wind speed (one full quiver denotes a speed of 10 m s−1; one 
half quiver a speed of 5 m s−1 and check for consistency with the geostrophic 
relation: 
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where f = 2Ωearth sin lat is the Coriolis parameter, the rotation of the Earth 
is Ωearth = 7.29 × 10−5 s−1 , g is the acceleration due to gravity, Δh is the 
difference between consecutive height contours (note the contour interval) and 
d is the horizontal separation of the height contours in meters. Remember that 
1 degree of latitude is equivalant to 111 km. 

2. A punter kicks a football a distance of 60 m on a field at latitude 30◦N. Assuming 
the ball, until being caught, moves with a constant forward velocity (horizontal 
component) of 20 m s−1 , determine the lateral deflection of the ball from a 
straight line due to the Coriolis effect. [Neglect friction and any wind or other 
aerodynamic effects.] 

3. The Gulf Stream leaves the coast near Cape Hatteras (about 36◦N) and me­
anders into the open ocean. Current meters show that the flow speed is about 
2 m s−1 and that the stream extends through the top 1000 m of the ocean. 
Assume a linear profile with speed equal to zero at 1000 m depth. The stream 
is typically 50 km wide. Derive the thermal wind equation for a simple unidi­
rectional current in water, using x as the direction along the current and y as 
the direction across the current. Use the equation of state: 

ρ = ρref [1 − α(T − Tref )], 

where ρref = 1000 kg m−3 , and α = 2 × 10−4 K−1 . Use the thermal wind 
equation to estimate the temperature difference horizontally across the current. 
Observed contrasts are about 3 K. 

4. The following gure shows, schematically, the surface pressure contours (solid) 
and mean 1000hPa-500hPa temperature contours (dashed), in the vicinity of a 
typical northern hemisphere depression (storm). L indicates the low pressure 
center. Sketch the directions of the wind near the surface, and on the 500 hPa 
pressure surface. (Assume that the wind at 500 hPa is significantly larger than 
at the surface.) If the movement of the whole system is controlled by the 500 hPa 
wind (i.e., it simply gets blown downstream by the 500 hPa wind), how do you 
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most ozone depletion is taking place.) 
Assuming that the temperature at the pole is (at all heights) 50K colder  at  80! latitude 
than at 40! latitude (and that it varies uniformly in between), and that the westerly 
wind speed at 100hPa pressure and 60! latitude is 10ms!1, use the thermal wind rela-
tion to estimate the wind speed at 1hPa pressure and 60! latitude. 

6. The following gure shows, schematically, the surface pressure contours (solid) and 
mean 1000hPa-500hPa temperature contours (dashed), in the vicinity of a typical 
northern hemisphere depression (storm). 

“L” indicates the low pressure center. Sketch the directions of the wind near the surface, 
and on the 500hPa pressure surface. (Assume  that  the wind  at 500hPa  is signicantly 
larger than at the surface.) If the movement of the whole system is controlled by the 
500hPa wind (i.e., it simply gets blown downstream by the 500hPa wind), how do you 
expect the storm to move? [Use density of air at 1000hPa = 1!2kg m!3; rotation rate 
of Earth = 7!27 × 10!5s!1; gas  constant  for  air  = 287J kg!1 . A second, working copy 
of the gure is included at the back.] 
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expect the storm to move? [Use density of air at 1000hPa =1.2 kg m−3; rotation 
rate of Earth = 7.27 × 10−5 s−1; gas constant for air = 287 J kg−1.] 

5. Derive	 the mass conservation equation in pressure coordinates following the 
steps outlined in section 6.3.2 of the textbook. Then show that, if the horizontal 
flow is in geostrophic balance, the vertical velocity ω = Dp/Dt is independent 
of pressure. 

6. Consider the problem illustrated by the Matlab program Pucks on ice. In order 
to get this m-file,you should download both the main program pucks on ice script.m 
as well as the files pucks on ice.m, draw fig2.m and deriv.m. Try running the 
program. Pucks on ice examines the effect of an impulsively-imposed body force 
upon a series of ”hockey pucks” of uniform mass that are distributed about the 
surface of a frozen ocean. The pucks are initially at rest. The body force, which 
pushes the pucks to the northeast, acts for 3 days and then stops. The inte­
gration of the ensuing motion continues for period of time after the forcing has 
ceased. 

This is an ”f-plane” calculation in two dimensions, in which the Coriolis force 
is set to a fixed latitude (30 degrees north latitude in the first example). There 
are a number of ”forces” in this problem, in addition to the body force. First, 
friction is weak and opposed to the motion of the particles. If the particle ve­
locity is u, then the frictional force per unit mass is expressed as -r*u. Second, 
because the frozen ocean surface is not flat, gravity (g, directed downwards) 
accelerates the pucks down the sloping surface. In the x-direction this acceler­
ation, or force per unit mass, is given by −g(dh/dx), where dh is the change in 
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surface height over a distance dx. The equations used are as follows: 

Dx 
= u,

Dt 
Dy 

= v, 
Dt 
Du dh 
Dt 

− fv = −ru − g
dx 

+ Fx, 

Dv dh 
+ fu = −rv − g + Fy, (1)

Dt dy 

where (x,y) are the eastward and northward particle position, (u,v) are the east­
ward and northward particle velocity, f is the Coriolis parameter, and (Fx,Fy) 
are the eastward and northward components of the external body force. 

The frozen sea surface has a ”bump” that is Gaussian in shape, centered at 
(xm,ym), with an amplitude, h0, and a length scale defined by (lx,ly). The sea 
surface height is given by the following: 

h(x, y) = h0 exp(−((x − xm)/lx)
2 − ((y − ym)/ly)

2), 

where xm = ym = 400 km, and lx = ly = 30 km. 

The model runs five different scenarios. For every scenario, the Matlab script 
produces two figures with particle trajectories and a figure with the bump shape. 
A detailed explanation of what each figures show is displayed by the script. You 
must comment on the trajectories of particles on the bump and away from the 
bump in the five different scenarios generated by the script. The five different 
scenarios differ in the bump height and latitude: 

(a) The bump has h0 = .05 m and the latitude is 30 degrees. 

(b) The bump is changed to a dimple, making h0 = −.05 m. 

(c) The latitude is changed to the north pole (lat=90). 

(d) The latitude is changed to the equator (lat=0). 

(e) The latitude is changed to −30 degrees (southern hemisphere) 

(f) Consider the equations with no body or topography forces. Derive expres­
sions for the evolution of the oscillation for small friction and determine 
the frequency of the oscillation. What are the equations representing the 
geostrophic balance and why do the particles rotating around the bump 
slowly spiral out? 

Appendix 

To access the latest 500mb height analysis from the web go to our synoptic web site 
here: http://paoc.mit.edu/synoptic/ and 
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•	 Click on upper in the Custom Plots section on the lhs sidebar. 

•	 Click on height and wind in the yellow box on the upper rhs of the page. 

•	 Click on Generate Map – this will send a job to our server, get the data, graph 
it up and send a gif back to your browser. The contours are labelled in metres 
and the winds plotted as vectors. 

If you would like a .ps le sent back to your computer change the device setting on the 
page to ps. Click again and you should be able to save it to your computer. Remember 
to save as a .ps le. 
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