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Gravity Anomalies 

For a sphere with mass M, the gravitational potential field Vg ouside of the 
sphere is: 

! 

Vg = "
MG

r

where G is the universal gravitational constant (6.67300 × 10-11 m3 kg-1 s-2) 
and r is distance from the center of the sphere. The gravitational field is 
related to the potential field by: 
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again provided that the field is measured outside of the sphere. 

Planetary Reference Gravity Field 
Because planets are not spheres, but rather slightly oblate spheroids (because 
of their rotation around the spin axis), the gravitational field is not quite that 
of a sphere. For an oblate spheroid, the magnitude of the gravitational field 
has terms proportional to the sign of the latitude, or: 
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This is called the “reference gravity field”. If we want to look at gravity due 
to mass anomalies within the crust and mantle, we need to first subtract off 
the reference gravity field from the observed gravity field to look at what is 
left over that is due to mass anomalies or dynamic processes that result in 
mass anomalies. On earth g at the surface is 9.81 m/s2, while the anomalies 
we want to look at are 4 or 5 orders of magnitude smaller. Generally we 
measure gravity anomlies in units of mgal, where 1 mgal=10-5m/s2. 

Free-Air (Elevation) Corrections 

Suppose we have a planetary gravity field, with the best-fitting reference 
gravity field subtracted off. Now we would like to interpret what is left 
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over. Another issue that we need to worry about is the fact that our gravity 
observations are probably made at different elevations relative to the best-
fitting oblate spheroid for the planet of interest. This happens because of 
topography, if we make the measurements at ground level, or because our 
space craft’s orbit changes elevations with time. We don’t want to mix up 
measurements that change due to the elevation of measurement with 
measurements that change due to the presence of mass anomalies. 

For simplicity, from now on we will assume our planet is a sphere, and that 
the reference gravity field can locally described by MG/r2 where r is just the 
distance from the point of measurement to the center of mass of the planet. 
Suppose that the radius of the planet is R and the measurement is made at a 
height h above the best-fitting oblate spheroid. Also suppose that h is small 
compared to R. Then the gravity field measured at h will be: 
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where gs is the reference gravity field at the surface of the planet (or rather at 
the surface of the oblate spheroid). The expected variation in the gravity 
field with height is thus: 
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The term is parentheses is called the “free-air” correction, meaning that it is 
a height correction that can be used to reduce gravity measurements to what 
they would be if made at sea-level (or to another oblate spheroid, in space 
for example, with a distance from the center of the planet of R). It is easy to 
evaluate this correction. For example, for Earth, R=6400 km, go=9.81 m/s2. 
This gives (2go/R)=3.06 10-6 s-2=0.306 mgal/m or 306 mgal/km. 

Mass Anomalies and Gravity Anomalies 
Now that we have taken care of the reference gravity field and the elevation 
corrections, we are ready to start computing gravity anomalies. For 
simplicity we will do everything in two-dimensions and in Cartesian 
coordinates, so that all mass anomalies are invariant in the y-direction. 
Suppose that we have a “line” anomaly, with a density Δρ with the 
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surrounding crust or mantle and a width dxo and height dzo. Suppose that the 
anomaly is at a depth b below the point where we make our measurements. 

Remember that in class we showed that when we measure the absolute value 
of the gravitational field, all we are really able to measure is the vertical 
component of the gravity field created by the mass anomaly (because the 
mass anomaly field will be so much smaller than the total planetary field and 
our gravimeters measure only the magnitude of the field). 

First, let’s consider a only small segment of the line anomaly, of length dyo 
located at position (xo, yo, -b) and compute the vertical component of the 
anomaly field at position (x,y,0). This is easy: 
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where the first term in parentheses is the total magnitude of the anomaly 
field at the observation point and the second term is the sine of the angle 
from the observation point to the mass anomaly. We can find the gravity 
anomaly due to the total line load by integrating this expression over yo and 
letting the ends of the line go to ±infinity. So: 
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or: 
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This expression is generally useful for computing predicted gravity 
anomalies from any distribution of masses at a depth b. If the depth range of 
the mass anomalies is not too different from b, for example variations of 
Moho (crust-mantle boundary) that oscillate around b, then we “flatten” all 
the mass onto a depth b. If the variation is too big for this, we have to do 
something more complicated, but for now we will just assume that we can 
treat all the anomalous mass as being concentrated onto a surface at depth b. 

One useful distribution of mass to solve for is a strip of mass of thickness 
dzo extending from xo=x1 to xo=x2. This is easy so solve for by integration. 
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If the load is very narrow, so that (x1-x2) is very small compared to b, then 
the gravity anomaly at the surface looks just like that of a line load: 
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If the strip is very wide compared to the depth and the observer is located 
above the anomaly and far from the edges, then the mass anomaly looks like 
that of an infinite sheet of material: 
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If the strip is very wide compared to the depth but the observer is near 
enough to one edge, say at x1, to “see” it in the gravity, then: 
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Now we have enough information to begin to ask how well we can “see” 
mass anomalies at depth using gravity measured at the surface or from 
space. Let’s start by thinking about gravity measured at the surface of a 
planet before we go on to measurements made from space and ask how well 
we can distinguish a strip of mass from a line-mass, assuming that the total 
mass anomaly is the same in both cases and that the center of the strip and 
the center of the line-mass coincide. Let the line mass and the strip both be 
centered at xo=0 and let the strip have a halfwidth a, so that the total mass 
anomaly in cross-section is (2a dzo Δρ). 

The gravity anomaly from the line-mass is: 
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The gravity anomaly from the strip is: 
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