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Cooling Planets 

From the expression that we derived above for convective heat flow, we can 
calculate how fast a planet will cool due to convective circulation in its 
mantle. We already showed that conductive cooling can’t penetrate much 
below several hundred kilometers depth in 4 Gy, so the main process by 
which planetary interiors cool has to be convection. 

For mantle materials, viscosity, which shows up the Rayleigh number and 
the heat flow expression, is strongly dependent on temperature, and we have 
to take this into account when we compute the cooling. We can approximate 
the viscosity dependence on temperature (this is just a useful approximation 
in a form that will be mathematically tractable!) as: 
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where T is the temperature in the middle of the mantle. γ should probably be 
set such that a 100°C increase in temperature gives about an order of 
magnitude decrease in viscosity, so a value of .05 or so is reasonable. If 
there is a linear thermal gradient in the mantle, then T is also the average 
temperature of the mantle. 

Next, we need to write an equation that relates the change in temperature of 
the mantle through time to the convective heat flow. Consider a vertical 
column of material with height d, surface area A and volume V. Then: 
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where Qr is the heat production rate per unit volume and d is the thickness of 
the convecting layer. For simplicity we will assume that all the heat 
generated is added at the base of the convecting layer, although this is not in 
fact really correct and we would need to adjust for the internal generation of 
heat. Simplifying to remove the surface area and volume terms: 
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Now set this equal to the expression for convective heat flow: 
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which is the same as: 
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We will now substitute in the expression for µ(T), and so that we have an 
expression that is easy to solve, assume that ΔT is a constant. 

(remember that ΔT is the superadiabatic temperature difference between the 
top and bottom of the mantle): For mantle materials, viscosity, which shows 
up the Rayleigh number and the heat flow expression, is strongly dependent 
on temperature, and we have to take this into account when we compute the 
cooling. We can approximate the viscosity dependence on temperature (this 
is just a useful approximation in a form that will be mathematically 
tractable!) as: 
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γ should probably be such that a 100°C increase in temperature gives about 
an order of magnitude decrease in viscosity, so a value of .05 or so is 
reasonable. Then, substituting: 
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Note that T is the average temperature of the mantle and ΔT is the super-
adiabatic temperature. If there is a linear thermal gradient in the mantle, then 
T is also the temperature halfway down through the mantle. 
From this, we can calculate how fast a planetary mantle will cool by 
convection if we know the thickness of the mantle and the various other 
parameters. This differential equation is easily solved by rewriting and 
integrating in the steps below: 
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Integrate: 
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Solve for the constant of integration by requiring T=Tin at t=0: 
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It might be more convenient to write this as a function of time rather than 
temperature, so rewriting (in many steps): 
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If we let Tin be sufficiently large, then the exponential term on the left hand 
side is very small and can be dropped: 
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or finally, in “convenient” form: 
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To get a first estimate of what this looks like, let’s assume we are 
looking at planets with the same density as the earth but a different radius. 
In this case g will simply scale with the planetary radius. ρ and α, density 
and coefficient of thermal expansion, are independent of planet size: 
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QR = .01µW /m
3 =10"8W /m

3

# =10"6m2
/s

$ = 4000kg /m3

Cp =1260J /kgK

K = 5W /mK

% =10"5K"1

& = .01

' = .05

µo =1022Pa.s

To =1300°C

(T =10°C

We can choose any value of d, the thickness of the convecting layer, provided that it is 
less than R. 

Descending slab in the Earth – part of the convection system: 

For all planets: 

Courtesy of Prof. Robert van der Hilst at MIT. Used with permission.

http://www.geophysik.uni-muenchen.de/research/geodynamics/essay


52 

http://www-geology.ucdavis.edu/~kellogg/mantle.jpeg 

Courtesy of Prof. Bradford Hager at MIT. Used with permission.

Courtesy of Louise H. Kellogg at University of California. Used with permission.

http://www-geology.ucdavis.edu/~kellogg/mantle.jpeg
http://quake.mit.edu/hilstgroup/MantleConvection/ConMan.gif

