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Elastic Stress Strain Relations 

In elastic materials, stress is linearly related to strain, as opposed to viscous 
materials, where stress is related to strain rate. 

What is strain? 

Consider a cube with sides of lengths Δx, Δy, Δz (all equal). Suppose that 
the cube is translated by an amount (u,v,w) and at the same time stretched, 
only in the x-direction, by an amount Δu. 

Normal strains are defined as change in length divided by the original 
length. So here, normal strain in the x-direction, written εxx, is: 
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And similarly for the normal strain in the y-direction: 
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If a normal strain is positive, then the material is stretching (lengthening) in 
that direction; if negative, then the material is shortening in that direction. 
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Shear strains measure the extent to which a marker box, originally 
with right angle corners, is changed in shape so that its corners are no longer 
right angles. Consider the same box originally with sides (Δx, Δy, Δz) in 
length. 

The shear strain, written εxy =εxy is defined as the sum of the angles θ1 and θ2 

divided by 2. Noting that for small strains, which we are considering here, 
θ1=tan(θ1)=Δu/Δy and θ2=tan(θ2)=Δv/Δx, then: 
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There are of course comparable shear strains and normal strains that involve 
the z-dimension, but we will confine ourselves to two dimensions in the x-y 
plane. 

You will remember from your physics course, Hooke’s law for a spring, 
which says that: 

F=-kx 

In thinking about the earth, we will use the same relationship, except that we 
will consider force per unit area (stress) and strain rather than force and 
displacment. First we need to define normal and shear stresses: 
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The diagram above shows the normal stresses and shear stresses 
acting on a small cube within a deforming medium. The normal stress σxx is 
defined as the stress (positive out) corresponding to a force in the x-
direction acting on the plane normal to the x-axis, as shown. Similarly for 
the normal stress σyy. The shear stress, σxy, is defined as the stress 
corresponding to the force in the x-direction acting on a plane perpendicular 
to the y-axis, and vice versa for σyx. However, σxy and σyz must be or else 
the cube will be undergoing rotational acceleration, so we can write both 
shear stresses as σxy. 

Now we can take advantage of Hooke’s law, that relates force and 
displacement in an elastic material, except that we are going to use a two-
dimensional version that relates stress and strain. 
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Although there a 9 constants of proportionality here, we can get rid of all but 
two of them by requiring the expression to hold true under rotation of the x-
y axes – the expression wouldn’t be useful if it held in only one direction, at 
least for an isotropic material. So, considering a rotation of axis by 90°, it is 
clear that the proportionality constant between σxx and εxx has to be the same 
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as that between σyy and εyy, etc. So right away we can simplify the 
expression a bit: 
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It is easy to show, but a bit messy, that if we rotate our axes by an arbitrary 
angle θ, that the relation between stress and strain is identical under rotation 
only if most of the constants of proportionality are related to one another, 
with only two independent terms. It is common practice to call these two 
terms the Lame coefficients, written λ and µ, so that: 

! 

" xx = (# + 2µ)$xx + #$yy

" xy = µ$xy

" yy = #$xx + (# + 2µ)$yy

µ is called the shear modulus because it relates shear stress to shear strain. λ 
doesn’t have a particular name (that I know of) but it and µ together can be 
related to the bulk modulus (K). The bulk modulus relates the change in 
volume of a unit cube of material to the (negative) pressure applied to the 
cube of material. Of course, we have to do this in three dimensions. First we 
note that pressure is just the average normal stress applied to all the surfaces 
of the cube, so: 

! 

"P = (# xx +# yy +# zz) /3

Then we note that the volume increase of the unit cube can be related to the 
normal stresses by: 

! 

"V = (1+ #xx )(1+ #yy )(1+ #zz) $1 % #xx + #yy + #zz

Finally, expanding our stress to strain expressions to three dimensions for 
normal stress/strain gives: 

! 

" xx = (# + 2µ)$xx + #$yy + #$zz

" yy = #$xx + (# + 2µ)$yy + #$zz

" zz = #$xx + #$yy + (# + 2µ)$zz
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Adding all three equations gives: 

! 

" xx +" yy +" zz = (3# + 2µ)($xx + $yy + $zz)

or 

! 

"P = #V ($ + 2µ /3) = K#V

so that the bulk modulus K is related to the lame coefficients by: 

! 

K = (" + 2µ /3)

The Seismic Wave Equation 

Seismic waves travel by elastic deformation of the crust, mantle and core, on 
timescales that are very short (fractions of seconds) compared to the 
timescales of geologic strain (millions of years). 

We can derive the seismic wave equation from the stress-strain relationship 
in an elastic material, with Lame coefficients µ and λ. This can be done in 
the general 3D case, and is by real seismologists, but here we will just derive 
the wave equation for simple plane P and S waves. Let’s start with P-waves, 
and consider a wave traveling in the x-direction. The wave train consists of 
a energy packet that travels at velocity vp; within the energy packet, the 
elastic material vibrates back and forth in the x-direction. For a plane wave, 
there is no variation in displacement or velocity (or anything else) in the y-
and z- directions. Therefore we can consider all derivatives with respect to y 
and z to be zero. 

The basic physics boils down to F=ma. Remember that on geological 
timescales, acceleration and momentum terms in any force balance are 
effectively zero (outside of the core), but for very short-term deformation, 
the acceleration is important (otherwise we could not have waves). Let’s 
start with F=ma, but write this in terms of the forces acting on a cube of 
material with dimensions Δx, Δy and Δz. Thus: 
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or, dividing through by Δx, Δy and Δz and taking the limit as Δx becomes 
small: 
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Now let’s replace σxx by the normal strains using the equations derived in 
the preceding section: 
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We also know how to relate εxx and εyy to derivatives of displacement, from 
the preceding section. Making that substitution gives: 
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This can be further simplified by noting that µ and λ are constants and 
remembering that for this particular type of plane wave, all derivatives with 
respect to y are zero. So: 
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Finally, we can divide to get: 
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This is the wave equation for a plane P-wave traveling in the x-direction. It 
should remind you of the equation of motion for a harmonic oscillator. 
From this, we can easily find the velocity with which the wave propagates 
through the material; remember that this is the group velocity and is not the 
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same as the rate of movement of the material at any one point. Suppose that 
we have a (non-dispersive) wave traveling at velocity vp. Then the form of 
the wave will u(x-vpt) where u is some function that describes the 
displacement due to the wave. Substituting this into the equation above, we 
find: 

or: 
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Using essentially the same procedure, it is easy to show (you get to do it for 
homework) that the velocity of a planar S-wave is: 
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v
s
=

µ
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Although we have derived the wave equation only for simple planar waves, 
the P- and S- wave velocities that we have obtained are valid for all seismic 
waves. You will sometimes see the P-wave velocity written in terms of the 
bulk modulus, K, instead of the Lame coefficient λ: 

! 

vp =
(K + 4µ /3)

"


