
Coding Tips 
 

Andrew Haydn Grant 
Technical Director 
MIT Game Lab 
September 22, 2014 

1



 
 
 
 
 
 
 
 
 
 
 
 
Iterate Everything 

 
Experiment, analyze, repeat 
● Paper prototypes 
● Digital prototypes 
● Team communication 
● Baseball pitches 
● Scientific Theories 
● Romantic relationships 
● Lasagna recipes 
● Coding style 
 
 
 
 
 
 

2



Quick Review 

3



All Software Sucks 

But we still use it. 

4



All Software Sucks 

Including yours. 

5



NOT Writing Code 
 

● Coding Is Slow 
o think 
o implement 
o debug 
o integrate 
o debug 
o debug 
o debug 
 

6



 

● Coding Is Slow 
o think 
o implement 
o debug 
o integrate 
o debug 
o debug 
o debug 

● Debugging Is Slower 

 

NOT Debugging 

7



How To Debug Code 
 

 
 
 
● Figure out the problem 
● Change the code 
 
 
 

8



 
 
 
 
 
 
 
 
 
 
 
 
 

Playtest Your Code 

“I know that man page is clear!  I wrote it.” 
 
● Your gameplay is harder than you think it is. 
● Your puzzles are harder than you think that are. 
● Your instructions aren’t as clear as you think they are. 
● Your documentation isn’t as clear as you think it is. 
● Your code is not as comprehensible as you think it is. 

 
 
 
It’s harder to read code than to write it. 
 

9



Make It Easier 
 

● Write your code to require as little knowledge as 
possible. 
○ of the project 
○ of the function 
○ of the computer language 
○ of the subject matter 

 
 
 

10



 
 
 
 
 
 
 
 
 
 
 
 
Psychology 

 
 
Miller’s Law: 
The number of objects an average human can hold in 

working memory is 7 ± 2. 
 
 

11

http://en.wikipedia.org/wiki/Working_memory


 
 
 
 
 
 
 
 
 
 
 
 
Psychology 

 
 
 
 
Decision Fatigue: 
The deteriorating quality of decisions made by an 

individual, after a long session of decision making 
 

12



 
 
 
 
 
 
 
 
 
 
 
 

Simplicity 
 

 
● Simplicity means easier to read. 
● Simplicity means fewer bugs. 
● Simple rarely means “fewer characters” 
● Each step is simple.  When there are too many steps to 

hold in your head, clump them. 
● Some language functionality is awesome, but still 

dangerous. 
○ In particular, be wary of “write once read never” 

code. 
       

13



 
 
 
 
 
 
 
 
 
 
 
 

Write Once, Read Never 
 

 
 

       

14



 
 
 
 
 
 
 
 
 
 
 
 

Comments 
 

● Write comments to explain WHY we are doing 
something. 

● Write comments to explain WHAT we are doing only 

when the briefest glance at the code is not enough. 
● Name variables and functions so that they remove the 

need for comments. 
● If an algorithm is long enough that it's easy to lose track 

of the steps, write an overview of the algorithm in plain 
language. 

● When in doubt, add a comment. 
 
 
 15



 
 
 
 
 
 
 
 
 
 
 
 

Comments 
 

 
 

// Is the enemy off the screen? 

if (x < 0 || x >= width)  

{ 

   // Yes! 

   return null; 

} 

 
 
 

16



 
 
 
 
 
 
 
 
 
 
 
 

Code 
 

 
 
if ((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1) < 900) 

 return 50; 

 
 
 

17



 
 
 
 
 
 
 
 
 
 
 
 

Code 
 

 
 

if ((x0-x1)*(x0-x1)+(y0-1)*(y0-y1) < 30*30) 

 return 50; 

 
 
 

18



 
 
 
 
 
 
 
 
 
 
 
 
Code 

 
 
 

if ((v0-v1).getLength() < 30) 

 return 50; 

 
 
 

19



 
 
 
 
 
 
 
 
 
 
 
 
Code 

 
 

 

// Did the player get a bulls eye? 

if ((v0-v1).getLength() < 30) 

{ 

 // Yes!  Return the bulls-eye score. 

 return 50; 

} 

 
 

20



 
 
 
 
 
 
 
 
 
 
 
 
Code 

 
 

 

 

Vector2 offset_from_center = arrow_location - center_of_target; 

 

bool is_bulls_eye = offset_from_center.getLength() < bulls_eye_radius; 

 

if (is_bulls_eye) 

{ 

 return bulls_eye_score; 

} 

 
 

21



 
 
 
 
 
 
 
 
 
 
 
 
Shorter Functions 

 

22



 
 
 
 
 
 
 
 
 
 
 
 

Make Wrong Code Look Wrong 
 

 
float track_length = angle * radius; 
 
float expected_race_duration = track_length / speed; 
 
 
 

23



 
 
 
 
 
 
 
 
 
 
 
 

Make Wrong Code Look Wrong 
 

 
float cm_track_length = angle_in_degrees * radius_in_inches; 
 
float ms_expected_race_duration = km_track_length / mph_speed; 
 
 
 

24



 
 
 
 
 
 
 
 
 
 
 
 

Variables, not Constants 
 

 
 
 
Present options to game designer 
A constant you can tweak is only useful IF the tweaker can figure out which 
constant does what 
UNITY tips- 
   Expose constants in the editor so people can play with them 
      But then make them private if you find a global value that works 
 
 
 
 
 

25



 
 
 
 
 
 
 
 
 
 
 
 
Variable Names 

 
 
● Should be longer than you think 
● Should be pronouncable 
● Should look different: ClientRecs  ClientReps 
● Should be spelled correctly 
● Should include the units of measurement 
● Should not be reused 
 
 
     
      

26



 
 
 
 
 
 
 
 
 
 
 
 
Function Names 

 
 
● Should be longer than you think 
● Should be pronouncable 
● Should look different 
● Should be spelled correctly 
● Should include the units of measurement 
 
● Are the primary way you teach other programmers 

about your API 
 
     
      

27



 
 
 
 
 
 
 
 
 
 
 
 

Variable Scope & Names 
 

 
void FeedThePigs(int num_truffles) 
{ 
 this.numHungryPigs -= num_truffles; 
 float total_cost = num_truffles * gCostInDollarsPerTruffle; 
 total_cost += CalculateOverhead(total_cost); 
 gCash -= total_cost; 
} 
 
 
 

28



 
 
 
 
 
 
 
 
 
 
 
 

Parallel Arrays 
 

 
string[] PlayerNames; 
int[] PlayerCash; 
Vector2[] PlayerLocation; 
 
AVOID. 
 
Player[] Players; 
 
 

29



 
 
 
 
 
 
 
 
 
 
 
 
Order Of Operations 

 
float y = 35 * x + (int) --fever / 4.0f + x ^ 2 % snarkle++; 
 
 
I use parenthesis. 
 

30



 
 
 
 
 
 
 
 
 
 
 
 
Warnings Are Errors 

 
 
 
● Warnings are often useful clues about a flaw in your 

code. 
● When you let warnings stick around, you won’t notice 

the new one that actually matters. 
 
 
 

31



 
 
 
 
 
 
 
 
 
 
 
 

Backwards Conditionals 
 

if (player_spaceship == null)  {} 
if (null == player_spaceship) {} 
 
 
 
 
 

32



 
 
 
 
 
 
 
 
 
 
 
 

Backwards Conditionals 
 

if (player_spaceship == null)  {} 
if (null == player_spaceship) {} 
 
// Because 
if (player_spaceship = null)  {} // valid code (in some languages) 
if (null = player_spaceship)  {} // NOT valid code 
 
//Similarly,  
if (3 = num_players) {} 
if (“ferdinand” = player_name) {} 
 
 
 
 
 

33



 
 
 
 
 
 
 
 
 
 
 
 
Split Up The Math 

 
 
 
 
float foo = (x^2 - sqrt( visibility_threshhold - invisibility_factor / ECM_tech )); 
 
vs 
 
float adjusted_invisibility = invisibility_factor / ECM_tech; 
float visibility = visibility_threshhold - adjusted_invisibility; 
float foo = x^2 - sqrt(visibility); 
 
 
 
 
 
 

34



 
 
 
 
 
 
 
 
 
 
 
 
Split Up The Math 

 
 
 
 
x = foo + bar--; 
 
vs 
 
x = foo + bar; 
bar--; 
 
 
 
 

35



 
 
 
 
 
 
 
 
 
 
 
 
Booleans 

 
A boolean name should ask a question. 
That question should be unambiguously answered by TRUE or FALSE. 
 
Booleans 
   IsHungry 
   HasFood 
   WasEaten 
 
 
Done   (yay) 
Status (boo) 
IsSquare >> Square 
 
 
    
 
 36



 
 
 
 
 
 
 
 
 
 
 
 
Mysterious Constants 

 
Never use string or numeric constants when you can use a variable 
 
// Bad 
   if (status == “closed”) 
     OR  
   if (status == 5) 
 
 
//  Good 
  if (status == Status.Closed) 
 
 
 

37



 
 
 
 
 
 
 
 
 
 
 
 
foo ? bar : baz 

 

38



 
 
 
 
 
 
 
 
 
 
 
 
goto 

 
 
 
● goto isn’t ALWAYS evil. 

○ Just most of the time. 
● Sometimes, it can make code MORE readable. 

○ A convoluted pile of nested IF statements can be really hard to 
unravel. 

 
 
 

39



 
 
 
 
 
 
 
 
 
 
 
 
Proximity 

 
 
Keep related actions together: 
 
● Allows reader to mentally clump code. 
● Reduces frequency of stealth code 
● Declare a variable right before you use it, not 30 lines earlier. 
 
Prepare(x); 
Prepare(y); 
Calculate(x); 
Calculate(y); 
Print(x); 
Print(y); 
 
 
 
 40



 
 
 
 
 
 
 
 
 
 
 
 
Proximity 

 
 
Keep related actions together: 
 
● Allows reader to mentally clump code. 
● Reduces frequency of stealth code 
● Declare a variable right before you use it, not 30 lines earlier. 
 
Prepare(x); 
Calculate(x); 
Print(x); 
 
Prepare(y); 
Calculate(y); 
Print(y); 
 
 
 
 

41



 
 
 
 
 
 
 
 
 
 
 
 
KISS 

 
 
Keep It Simple, Stupid. 
Keep It Stupidly Simple. 
 
 
● Do it the easy way first 
● Then do it the cool/elegant/efficient way WHEN THE EASY WAY FAILS. 

○ And run it by someone else on your team first. 
 
 
 

42



 
 
 
 
 
 
 
 
 
 
 
 
Systems 

 
 
 
Resist the temptation to build a system on day 1. 
 

43



 
 
 
 
 
 
 
 
 
 
 
 

Recursion 
 

 
 
● Recursion is really fun 
● Recursion is really hard to debug 

 
○ Never recurse when iterating will work just as well. 
○ Never have two functions recursively calling each other. 

■ It might be “elegant,” but you will tear your hair out getting it to 
work. 

■ And you will forever be terrified of changing the code (rightly so) 
 
 
 
 

44



 
 
 
 
 
 
 
 
 
 
 
 
Optimizing 

 
 

Wait. 
 
Only optimize your code if it is actually, observably slow. 
       
 

45



 
 
 
 
 
 
 
 
 
 
 
 
Address Bugs ASAP 

 

 
● Fix bugs before writing new code 

○ It will only get harder to fix them 
○ You might build on top of the bugs 
○ You cannot estimate bug fixes 
○ You are always ready to ship 

● Treat warnings as errors 
 
 

46



 
 
 
 
 
 
 
 
 
 
 
 
Won’t Fix 

 
 
Fixing bugs is only important when the value of having the 
bug fixed exceeds the cost of the fixing it. 
                 -Joel Spolsky 
 
 

47



 
 
 
 
 
 
 
 
 
 
 
 
Debugging 

 
 
 
● Use a debugger 

○ Learn it.  Love it. 
● Talk to a team mate. 

○ They probably will have no idea what you are talking about.   
■ That doesn’t matter. 

● Take a walk. 
● Binary search 

○ Perform a test that will cut out as many possibilities as you can. 
● If the bug magically vanishes, you are not done. 

○ But now you have a clue. 
 
 
 

48



 
 
 
 
 
 
 
 
 
 
 
 
Source Control 

 
 
● Check EVERYTHING into source control 

○ Especially 3rd party libs 
● Anyone should be able to do a get and build 

○ The build should be one human step. 
● Check in often 

 
 
 
 

49



 
 
 
 
 
 
 
 
 
 
 
 
Daily Builds 

 
● The checked-in build must never remain broken. 

○ Fix it immediately. 
● Do Check Builds 

○ Have a second, clean checkout of the code on your 
machine 

○ When you check in, immediately check out and build 
there! 

● Daily builds force a code test 
● Daily deliverables force a project status 

check 
 
 50



 
 
 
 
 
 
 
 
 
 
 
 
Coding Standards 

 
Why? 
● We like tidy code 
● It is an objective truth that opening braces belong on the same line as the 

code 
 
 

51



 
 
 
 
 
 
 
 
 
 
 
 
Coding Standards 

 
Why? 
● We like tidy code 
● It is an objective truth that opening braces belong on the same line as the 

code 
● Uniform code can reduce the sense of “MY code” 
● Rules reduce decision fatigue 
● Encourages code that is easier to read 
● Encourages code that is easier to debug 

 
 
 

52



Sources 

Code Complete by Steve McConnell

Joel is easy to read in blog-sized chunks.  He talks as much about management and 
startups as about code.  His writing style is fun and engaging. 
 
Steve has gigantic books that look really daunting.  I’ve never read one from cover to 
cover.  However, that’s because he has a lot to say and he says it well. 

http://www.joelonsoftware.com/ 
 
http://www.stevemcconnell.com/books.htm 

53

http://www.joelonsoftware.com/
http://www.stevemcconnell.com/books.htm


Coding Tips 
 

Andrew Haydn Grant 
Technical Director 
MIT Game Lab 
October 2, 2013 

54



 
 
 
 
 
 
 
 
 
 
 
 
Team Coding 

 
 
 

55



 
 
 
 
 
 
 
 
 
 
 
 
Pair Programming 

 
 
● Two programmers, one computer 

○ The driver writes code 
○ The observer or navigator reviews each line of code in real time. 

○ Switch roles frequently! 
● The driver considers tactical issues, focusing on the current task. 
● The navigator considers larger issues, acting as a safety net. 

 
 

56



 
 
 
 
 
 
 
 
 
 
 
 
??? 

 
Art 
   Placeholder art!  Awesome. 
   Timeboxing 
   Photoshop pngs: save for web!! 
   Sprite strips 
Audio 
    Can kill your download size. 
    Compress! 
    Mono! 
       mp3 is a pain, but ogg isn’t supported everywhere 
 
 
 

57



 
 
 
 
 
 
 
 
 
 
 
 
??? 

 
Slide from BBN presentation-  these things are hard 
    (in the slow sense) 

  Synchronizing music to user inputs 
   
 
 
 

58



 
 
 
 
 
 
 
 
 
 
 
 
Late Changes 

 
Trespasser Sorting 
   
 
 
 

59



 
 
 
 
 
 
 
 
 
 
 
 
The Iceberg Secret 

 

 
● Very little of your software is visible to the player 
● People judge software by how it looks 
● So make sure that it looks about as done as it is 

 ed;hjsdf;kj 
 
 

60



 
 
 
 
 
 
 
 
 
 
 
 

Beware Algorithms 
  

Especially ones you create yourself. 
 
Wait, what? 
  Cool ways of solving problems are one of the reasons that we all learned to 

program.  An Algorithm, in the textbook sense, is a particularly clever way of 
solving a problem.  We want to make some of our own. 

  Okay, but only make one when you need to. 
  This goes back to performance.  Most algorithms are about solving some 

problem QUICKLY.  The first step you should take is solving the problem in 
the simplest, most readable, least bug-prone way possible. 

  Then run it.  Computers are fast.  This may be good enough. 
 
After the simple thing fails, then think about optimizations.  After you’ve done 

the easy ones, then consider creating an algorithm.  No, wait, don’t!  Look 
online first.  It’s be faster and less bug prone to benefit from some poor 
shmuck who has solved (and debugged) this problem before. 

 

What is an algorithm?  Okay, there are simple algorithms that only take a few 
lines of text to explain.  We’re not talking about those.  We’re talking about 
something A* or harder, where the code reader has to THINK about why it 
works. 

 
 
 

61



 
 
 
 
 
 
 
 
 
 
 

Intelligent Design 
 

 
Evolved code vs designed code. 
   It’s stunning, really, how much the code of a long-running prject resembles DNA.  There are huge swathes of it that are useless, 
or appear to be.  But when you take them out, the program stops working. 
   Rewriting is dangerous, but only when you are rewriting old, evolved code. 
       
 

 
 

62



 
 
 
 
 
 
 
 
 
 
 
 
??? 

 
 

 
 

● Keep functions short. 

● Declare your variables as close as possible to the place where you will use them. 

● Don’t use macros to create your own personal programming language. 

● Don’t use goto. 

● Don’t put closing braces more than one screen away from the matching opening brace. 

 

 
 
 
 

63



 
 
 
 
 
 
 
 
 
 
 
 
??? 

 
 
 
But also resist the temptation to cut&paste code everywhere.  It’s already a 

good idea to split your code up into functions just for readablilty. 
It’s also a good idea to put common code in functions to save debugging time. 
So make it a function call instead of a cut&paste, but wait for AT LEAST the 

second instance of the code.  I like to wait for the third instance, but at that 
point I’m risking forgetting one of the first two. 

 
 
 

64



MIT OpenCourseWare
http://ocw.mit.edu
 
 
 
 
CMS.611J / 6.073 Creating Video Games
Fall 2014
 
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/
http://ocw.mit.edu/
http://ocw.mit.edu/
http://ocw.mit.edu/terms
http://ocw.mit.edu/terms



