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Outline

1. Introduction to Mechanics of Materials
Basic concepts of mechanics, stress and strain, deformation, strength and 
fracture
Monday Jan 8, 09-10:30am

2. Introduction to Classical Molecular Dynamics
Introduction into the molecular dynamics simulation; numerical techniques
Tuesday Jan 9, 09-10:30am

3. Mechanics of Ductile Materials
Dislocations; crystal structures; deformation of metals 
Tuesday Jan 16, 09-10:30am

4. The Cauchy-Born rule
Calculation of elastic properties of atomic lattices
Friday Jan 19, 09-10:30am

5. Dynamic Fracture of Brittle Materials
Nonlinear elasticity in dynamic fracture, geometric confinement, interfaces
Wednesday Jan 17, 09-10:30am

6. Mechanics of biological materials
Monday Jan. 22, 09-10:30am

7. Introduction to The Problem Set
Atomistic modeling of fracture of a nanocrystal of copper. 
Wednesday Jan 22, 09-10:30am

8. Size Effects in Deformation of Materials
Size effects in deformation of materials: Is smaller stronger?
Friday Jan 26, 09-10:30am



© 2007 Markus J. Buehler, CEE/MIT

Entropic change as a function of stretch
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Figure by MIT OCW.
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22rkbcS −=

Freely jointed Gaussian chain with n links and length l each 
(same for all chains in rubber)
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><=<⋅= 2
bRMS rlnr

The length            in the unstressed state is equal to the mean 
square length of totally free chains.

It can be shown that
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Persistence length

ξp

s

t(s)  tangent slope

The length at which a filament is capable of bending significantly in 
independent directions, at a given temperature. 
This is defined by a autocorrelation function which gives the characteristic 
distance along the contour over which the tangent vectors t(s) become 
uncorrelated 
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Figure by MIT OCW.
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Worm-like chain model

Freely-jointed rigid 
rods

Continuously
flexible ropes

Worm like chain model

DNA 4-plat electron micrograph
(Cozzarelli, Berkeley) 

Image removed due to copyright restrictions.
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Worm-like chain model

This spring constant is only valid for small deformations 
from a highly convoluted molecule, with length far from its 
contour length 

A more accurate model (without derivation) is the Worm-like 
chain model (WLC) that can be derived from the Kratky-
Porod energy expression (see D. Boal, Ch. 2)

A numerical, approximate solution of the WLC model: 
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Outline and content (Lecture 7)

Topic: Nanostructure of biological materials (proteins, molecules, 
composites of organic-inorganic components..);  deformation 
mechanisms;  size effects – fracture at nanoscale, adhesion

Examples: Deformation of collagen, vimentin, …: Protein mechanics

Material covered: Covalent bonding and models, chemical 
complexity, molecular potentials: CHARMM and DREIDING

Important lesson: Models for bonding in proteins, entropic vs. 
energetic elasticity; complexity of biological materials (multi-functional, 
nanostructured, precise arrangement, ..); small-scale fracture/adhesion: 
smaller is stronger

Historical perspective: AFM, single molecule mechanics; Griffith 
concept and adhesion strength, size effects 
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Proteins

An important building block in biological systems are 
proteins

Proteins are made up of amino acids

20 amino acids carrying different side groups (R)

Amino acids linked by the amide bond via condensation

Proteins have four levels of structural organization: 
primary, secondary, tertiary and quaternary
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Protein structure

Primary structure: Sequence of amino 
acids

Secondary structure: Protein secondary 
structure refers to certain common 
repeating structures found in proteins. 
There are two types of secondary 
structures: alpha-helix and beta-pleated
sheet. 

Tertiary structure: Tertiary structure is the 
full 3-dimensional folded structure of the 
polypeptide chain. 

Quartenary Structure:  Quartenary
structure is only present if there is more 
than one polypeptide chain. With multiple 
polypeptide chains, quartenary structure is 
their interconnections and organization. 

A A S X D X S L V E 
V H X X 

Images removed due to copyright restrictions.
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20 natural amino acids

Images removed due to copyright restrictions.
Table of amino acid chemical structures.
See similar image:  http://web.mit.edu/esgbio/www/lm/proteins/aa/aminoacids.gif.
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Hierarchical structure of collagen

Collagen features 
hierarchical structure

Goal: Understand the 
scale-specific 
properties and cross-
scale interactions

Macroscopic 
properties of collagen 
depend on the finer 
scales

Material properties 
are scale-dependent

(Buehler, JMR, 2006)

Images removed due to copyright restrictions.
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Elasticity of tropocollagen molecules

Sun, 2004
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The force-extension curve for stretching a single type II collagen molecule.
The data were fitted to Marko-Siggia entropic elasticity model. The molecule
length and persistence length of this sample is 300 and 7.6 nm, respectively.
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Modeling organic chemistry

Covalent bonds (directional)
Electrostatic interactions
H-bonds
vdW interactions

Images removed due to copyright restrictions.
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http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html
http://www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm

Model for covalent bonds

Bonding between atoms 
described as combination of 
various terms, describing the 
angular, stretching etc. 
contributions

Image removed due to copyright restrictions.
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Model for covalent bonds

Courtesy of the EMBnetEducation & Training Committee.
Used with permission. Images created for the CHARMM
tutorial by Dr. Dmitry Kuznetsov(Swiss Institute of Bioinformatics)
for the EMBnetEducation & Training committee (http://www.embnet.org)
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Bond Energy versus Bond length
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 Chemical type Kbond bo 

 C−C 100 kcal/mole/Å2 1.5 Å 

 C=C 200 kcal/mole/Å2 1.3 Å 

 C≡C 400 kcal/mole/Å2 1.2 Å 

Vbond = Kb b − bo( )2

Review:  CHARMM potential

http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html
http://www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm

Different types of C-C 
bonding represented by 
different choices of b0
and kb;  

Need to retype when 
chemical environment 
changes
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http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html

Review:  CHARMM potential

Nonbonding interactions

vdW (dispersive)

Coulomb (electrostatic)

H-bonding

Image removed for copyright restrictions.

See the graph on this page:
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DREIDING potential

Figure by MIT OCW.

Atom

H_
H__HB
H_b
B_3
B_2
C_3
C_R
C_2
C_1
N_3
N_R
N_2
N_1
O_3
O_R
O_2
O_1
F_
A13

0.330
0.330
0.510
0.880
0.790
0.770
0.700
0.670
0.602
0.702
0.650
0.615
0.556
0.660
0.660
0.560
0.528
0.611
1.047

180.0
180.0
90.0
109.471
120.0
109.471
120.0
120.0
180.0
106.7
120.0
120.0
180.0
104.51
120.0
120.0
180.0
180.0
109.471

0.937
0.890
1.040
0.997
1.210
1.210
1.210
1.210
1.167
1.390
1.373
1.432
1.280
1.360
1.860
1.940
1.285
1.330

109.471
93.3
92.1
180.0
109.471
109.471
92.1
90.6
180.0
109.471
109.471
91.6
90.3
180.0
90.0
90.0
90.0
109.471

Si3
P_3
S_3
Cl
Ga3
Ge3
As3
Se3
Br
In3
Sn3
Sb3
Te3
I_
Na
Ca
Fe
Zn

2K = 700 (kcal /mol) /A
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UFF “Universal Force Field”

• Can handle complete periodic table

• Force constants derived using general rules of element, hybridization 
and connectivity 

Features:

• Atom types=elements

• Chemistry based rules
for determination of 
force constants

Pauling-type bond order correction

Rappé et al.
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Common empirical force fields

Class I (experiment derived, simple form)
CHARMM
CHARMm (Accelrys)
AMBER
OPLS/AMBER/Schrödinger
ECEPP (free energy force field)
GROMOS

Class II (more complex, derived from QM)
CFF95 (Biosym/Accelrys)
MM3
MMFF94 (CHARMM, Macromodel…)
UFF, DREIDING

http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html
http://www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm
http://amber.scripps.edu/

Harmonic terms;
Derived from 
vibrational
spectroscopy, gas-
phase molecular 
structures
Very system-specific 

Include anharmonic terms
Derived from QM, more 
general

Image removed due to copyright restrictions.
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Hydrogen bonding
e.g. between O and H in H2O
Between N and O in proteins…

Alpha helix and beta sheets

Images removed due to copyright restrictions.

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.
See:  http://www.columbia.edu/cu/biology/courses/c2005/images/3levelpro.4.p.jpg
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Unfolding of alpha helix structure
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Figure by MIT OCW.

I

IIa

IIb

III

Figure by MIT OCW.  

Source: Ackbarow, T., and M. J. Buehler. "Superelasticity, Energy Dissipation and Strain Hardening of Vimentin Coiled-coil 
Intermediate Filaments."  Accepted for publication in: J Materials Science (in press), DOI 10.1007/s10853-007-1719-2 (2007).
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Unfolding of alpha helix structure
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Figure by MIT OCW.

Source: Ackbarow, T., and M. J. Buehler. "Superelasticity, Energy Dissipation and Strain Hardening of Vimentin Coiled-coil
Intermediate Filaments."  Accepted for publication in: J Materials Science (in press), DOI 10.1007/s10853-007-1719-2 (2007).
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Composed almost solely of protein, such 
as Spidroin (MaSp) I & II
Semi-crystalline polymer
Amorphous phase: Rubber-like chains, 
Gly-rich matrix
Crystals: H-bonded β-sheets of poly-Ala 
sequences

Spider Silk

Keten and Buehler, 2007

Images removed due to copyright restrictions.



© 2007 Markus J. Buehler, CEE/MIT

Unfolding of beta sheet

Titin I27 domain: Very 
resistant to unfolding 
due to parallel H-
bonded strands 

Keten and Buehler, 2007

Image removed due to copyright restrictions.
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Three-point bending test: 
Tropocollagen molecule

MD: Calculate bending stiffness; consider different deformation rates

Result: Bending stiffness at zero deformation rate (extrapolation)

Yields: Persistence length – between 3 nm and 25 nm (experiment: 7 nm)
Buehler and Wong, 2007
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Stretching experiment: Tropocollagen molecule
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Fracture at ultra small scales
Size effects
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Nano-scale fracture

Failure mechanism of ultra small brittle single crystals as a 
function of material size
Properties of adhesion systems as a function of material size: 
Is Griffith’s model for crack nucleation still valid at nanoscale?

σ

Griffith

“Macro”

h>>hcrit

σ

Griffith

“Nano”

h~hcrit

Stress 
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• Inglis (~1910): Stress infinite close to a elliptical 
inclusion once shape is crack-like

“Inglis paradox”: Why does crack not extend, despite 
infinitely large stress at even small applied load?
• Resolved by Griffith (~ 1950): Thermodynamic view of 
fracture

G = 2γ

“Griffith paradox”: Fracture at small length scales? 
Critical applied stress for fracture infinite in small 
(nano-)dimensions (ξ=O(nm))!

Considered here

Review:  Two paradoxons of classical 
fracture theories

ξ

σ→∞σ→∞

σ∞→∞

σ∞

σ∞

σ∞→∞

Buehler et al., MRS Proceedings, 2004 & MSMSE, 2005; Gao, Ji, Buehler, MCB, 2004

Infinite peak stress

Infinite bulk stress
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Thin strip geometry

Change in potential energy:  Create a “relaxed” element
from a “strained” element, per unit crack advance

,...),( aWW PP σ=
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Figure by MIT OCW.
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Fracture of thin strip geometry
Theoretical considerations
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= 2γ = G Griffith
E Young’s modulus
ν Poisson ratio, and 
σ Stress far ahead of the crack tip

σ
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Buehler et al., MRS Proceedings, 2004 & MSMSE, 2005; Gao, Ji, Buehler, MCB, 2004

ξ.. size of material

Figure by MIT OCW.
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Fracture of thin strip geometry
Theoretical considerations
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Transition from Griffith-governed failure to maximum strength of material

ξ

σf

σth
Theoretical strength

Griffith

ξcr

2
max

~
σ
γξ E

cr

Breakdown of Griffith at ultra small scales

- Griffith theory breaks down below a critical length scale

- Replace Griffith concept of energy release by failure at homogeneous stress
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At critical nanometer-length scale, structures become insensitive to flaws: 
Transition from Griffith governed failure to failure at theoretical strength, 
independent of presence of crack!!

Griffith-governed failure

Atomistic simulation results
Failure at theor. strength

Atomistic simulation indicates: 

(Buehler et al., MRS Proceedings, 2004; Gao, Ji, Buehler, MCB, 2004)
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Stress distribution ahead of crack
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Image removed due to copyright restrictions.
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Summary: Small-scale structures for 
strength optimization & flaw tolerance

Fracture strength is insensitive to 
structure size. 

Fracture strength is sensitive to 
structural size.

There is no stress concentration at 
flaws. Material fails at theoretical 

strength.

Material fails by stress concentration 
at flaws. 

Material becomes insensitive to 
flaws.Material is sensitive to flaws. 

h < hcrh > hcr

2
maxσ

γEhcr ∝

(Gao et al., 2004; Gao, Ji, Buehler, MCB, 2004)
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Can this concept explain the design of 
biocomposites in bone?

Characteristic size:  10..100 nm

(Gao et al., 2003, 2004)

2
max 1J/mGPa,100,25.0,

30
==≈≈ γνσ EE

Estimate for biominerals:

022.0* ≈Ψ nm30≈crh

Image removed due to copyright restrictions.
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High shear
zones
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Figure by MIT OCW.
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Autumn et al., PNAS, 2002

Adhesion of Geckos

200nm
Images remove due to copyright restrictions.

Courtesy of National Academy of Sciences, U.S.A. Used with 
permission.
Source:  Autumn, Kellar, Metin Sitti, Yiching A. Liang, Anne M. 
Peattie, Wendy R. Hansen, Simon Sponberg, Thomas W. 
Kenny, Ronald Fearing, Jacob N. Israelachvili, and Robert J. 
Full. "Evidence for van der Waals adhesion in gecko setae."  
PNAS 99 (2002): 12252-12256.
(c) National Academy of Sciences, U.S.A.
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Adhesion at small length scales

• Schematic of the model used for studies of adhesion: The model represents a 
cylindrical Gecko spatula with radius attached to a rigid substrate.  

• A circumferential crack represents flaws for example resulting from surface roughness.  
The parameter denotes the dimension of the crack. 

-At very small length scales, nanometer 
design results in optimal adhesion strength, 
independent of flaws and shape 
(Gao et al., 2004) 

-Since F ~ gR (JKR model), increase line length 
of surface by contact splitting
(Arzt et al., 2003)

Strategies to increase adhesion strength

Image removed due to copyright restrictions.
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Equivalence of adhesion and 
fracture problem
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Figure by MIT OCW.
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Equivalence of adhesion and 
fracture problem
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Theoretical considerations
Adhesion problem as fracture problem
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Continuum and atomistic model

Three-dimensional model

Cylindrical attachment device

Harmonic

LJ

LJ:  Autumn et al. have shown dispersive interactions govern 
adhesion of attachment in Gecko
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Stress close to detachment as a function 
of adhesion punch size

Smaller size leads to homogeneous stress distribution 

RRcr /

Has major 
impact 
on adhesion 
strength:
At small scale
no stress 
magnification

Figure removed due to copyright restrictions.
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Vary E and γ in scaling law
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• Results agree with predictions by scaling law

• Variations in Young’s modulus or γ may also lead to optimal adhesion

RRcr /
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governs adhesion strength

Figure removed due to copyright restrictions.
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Adhesion strength as a function of size 
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Optimal surface shape
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Optimal shape predicted by
continuum theory & shape parameter ψ

The shape function defining the surface shape change as a function of the 
shape parameter ψ.   For ψ=1, the optimal shape is reached and stress 

concentrations are predicted to disappear. 

Figure removed due to copyright restrictions.
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Creating optimal surface shape in 
atomistic simulation

Strategy:  Displace atoms held rigid to achieve smooth surface shape

"Rigid
 Restraint"

Figure by MIT OCW.
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Optimal shape

Stress distribution at varying shape

ψ

ψ=1:  Optimal shape

Figure removed due to copyright restrictions.
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Robustness of adhesion

• By finding an optimal surface shape, the singular stress field vanishes.

• However, we find that this strategy does not lead to robust adhesion systems.

• For robustness, shape reduction is a more optimal way since it leads to (i) 
vanishing stress concentrations, and (ii) tolerance with respect to surface shape 
changes. 

Figure removed due to copyright restrictions.
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Discussion and conclusion
We used a systematic atomistic-continuum approach to investigate brittle 
fracture and adhesion at ultra small scales
We find that Griffith’s theory breaks down below a critical length scale

Nanoscale dimensions allow developing extremely strong materials and 
strong attachment systems:  Nano is robust

Small nano-substructures lead to robust, flaw-tolerant materials.  
In some cases, Nature may use this principle to build strong 

structural materials.

Unlike purely continuum mechanics methods, MD simulations can 
intrinsically handle stress concentrations (singularities) well and provide 
accurate descriptions of bond breaking

Atomistic based modeling will play a significant role in the future in the 
area of modeling nano-mechanical phenomena and linking to continuum 
mechanical theories as exemplified here. 
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Fundamental length scales in 
nanocrystalline ductile materials

Similar considerations as for brittle materials and adhesion systems 
apply also to ductile materials

In particular, the deformation mechanics of nanocrystalline materials has 
received significant attention over the past decade

http://www.sc.doe.gov/bes/IWGN.Worldwide.Study/ch6.pdf

• Strengthening at small grain size (Hall-
Petch effect)

• Weakening at even smaller grain sizes 
after a peak

http://me.jhu.edu/~
dwarner/index_file
s/image003.jpg

d

Images removed due to copyright restrictions.
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Hall-Petch Behavior

It has been observed that the strength of polycrystalline materials 
increases if the grain size decreases

The Hall-Petch model explains this by considering a dislocation locking 
mechanism:

┴
┴

┴┴
d

Nucleate second source in 
other grain (right)

Physical picture:  Higher 
external stress necessary to 
lead to large dislocation 
density in pileup

dY
1~σ

2nd source

See, e.g. Courtney, Mechanical Behavior of Materials 
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The strongest size:  Nano is strong!

Yamakov et al., 2003, Schiotz et al., 2003

Different mechanisms have 
been proposed at 
nanoscale, including

• GB diffusion (even at low 
temperatures) – Wolf et al.

• GB sliding – Schiotz et al.

• GBs as sources for 
dislocations – van 
Swygenhoven, stable SF 
energy / unstable SF energy 
(shielding)

Figure removed due to copyright restrictions.
See p. 15 of http://www.imprs-am.mpg.de/summerschool2003/wolf.pdf
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Typical simulation procedure

1. Pre-processing 
(define geometry, build 
crystal etc.)

2. Energy relaxation 
(minimization)

3. Annealing (equilibration 
at specific temperature)

4. “Actual” calculation; e.g. 
apply loading to crack

5. Analysis

Real challenge:
Questions to ask and what to learn

F=ma
Image removed due to copyright restrictions.




