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metal foams
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MATERIAL INPUT ECONOMY MATERIAL OUTPUT

TOTAL INPUT 5348 TOTAL OUTPUT 4411
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Material Resources
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U.S. Copper Ore Grade Percent, 1880-2000
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Japan Copper cycle: One Year Stocks and Flows, 1990s

© STAF Project, Yale University
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Zambia’s Copper Cycle: One Year Stocks and Flows, 1994
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China’s Copper Cycle: One Year Stocks and Flows, 1994
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2002 Estimated In-Use Copper Stocks in Beijing—3D View
Source: T. Wang and T.E. Graedel, unpublished research, Center for Industrial Ecology, Yale University, New Haven, CT, 2005.
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Consumption attributes of contemporary buildings

Temporal

• Actual service lifetimes are uncertain (shorter or longer than intended)

• Buildings often outlast the firms that build them

• Buildings are one of the very few human artifacts that can span generations

Spatial

• Buildings are immobile over lifetime

• Materials and processes (energy) converge to site

• Materials (wastes or “residues”) are dissipated from site

Physical

• Buildings (cities and infrastructure) constitute the largest single stock type

• Each building is a “prototype”

• Buildings are meta-systems composed of complex semi-autonomous 
systems (with distinct lifecycles)



Comparative analysis of 
resource requirements 

1.Brick and concrete masonry 
block wall

2.Glass and aluminum 
curtainwall

3.Precast concrete panel and 
structural steel stud wall

4.Structural straw bale, wood 
stud and exterior finish plaster 
construction

Data sources:

US EPA Lifecycle Methods (1993)

SETAC (1993)

BEES (2000)

ISO 1401 (1998)

Scientific Certification Systems (1995)

Keoleian, G. (2001)

CES Materials Selector 4.5 (Beta version)
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Source: adapted from, Bras, B. and Graedel and Allenby







Low energy buildings and 
resource content
(whole building)

Increased energy efficiency 
continually recalibrates proportion of 
pre-use to use phase energy 
investment.

For example:

Single family detached house (USA)

Typical systems

9% pre-use, 91% use phase

Low energy systems

26% pre-use, 74% use phase

Keoleian, G. et al. 2001. Life-cycle energy, 
costs, and strategies for improving a single-
family house. JIE Vol.4, No.2: pp. 135-156.
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Strategies

Pre-Use

• Integrated delivery (construction) including premanufactured assemblies for 
dematerialized built environment (renewable and non renewable).

Issues: employment, quality, material flow control, waste control and reuse, 
transportation energy in construction, firm MFA analysis, product LCA.

Use

• Extended Producer Responsibility (EPR) or better yet Extended Industry Responsibility 
(EIR): product LCA

• Material reclamation, recycle, downcycle. 

• Comfort/Carbon Tax

Post-Use

• “Cities are the mines of the future.”, Jane Jacobs

Are we any closer to a Type III ecology?

Ecologies of Construction 03.20-21.06 Dept. of Architecture, MIT



Material flow analysis (MFA)
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Metabolism: the consumption of resources for the purpose of providing a unit of 
service.

Pre-Use
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Figure by MIT OCW.



Industrial ecology as steward of tools of analysis for resource consumption

[Mi,Ei] = [Mo,Eo] + [A.S.]

Mo
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Mi
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Anthropogenic Stock

Anthroposphere

Figure by MIT OCW.
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Figure by MIT OCW.

Santa Monica
Sustainable City Initiative

Source of recycled 
materials

Minimize 
waste stream

Local Resource System Boundary: Urban Center and Local Ecology

Maximize material 
resource transfer

Local site 
materials

Greater Los Angeles Basin
(source of post-industrial and post-consumer materials)



Ordnance Plant

Arden Hills, Minnesota

Built: 1930s

Dismantled: 2002

Materials recovered:

20,000 maple tongue and 
groove flooring, 

500,000 board feet of 
structural timber 

Cost of disassembly: 
$183,000

Cost of demo/landfilling: 
$600,000

Sears Catalog 
Warehouse Center

Chicago, Illinois

Built: 1906

Demolished: 1992-1994 
(full 2 yrs of demolition)

Size: 9 story, 3 million sq. 
ft.

Materials recovered: 

7.5 million board feet 
timber, 

23 million bricks

Site recovered for housing

The photographs on this and the following pages were removed for copyright reasons.



Murray Grove 
Apartments

London, England

Cartwright Pickard 
Architects

(Yorkon Building Modules)

Built: completed 2001

Size: 30 apartments, 5 
stories

On-site construction: 2 
weeks

Overall cost reduction: 
10% (affordable housing 
contract)



Premanufactured 
building modules

Yorkon

Foreman’s



Premanufactured 
components for 
buildings



source: photo J. Fernandez

Container City

India Wharf, London, UK
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Domain of the 
built environment

Extraction of natural 
resources

Processing into 
materials

Manufacture into 
components

Assembly into 
buildings

Building use

Disassembly

Waste for dumping

Recycling of materials

Reprocessing of materials

Reuse of components

Relocation of entire building

Construction

De-construction

Materials cycles in construction



Scope 
The analysis of the metabolism of the city of New Orleans may 

provide a unique understanding of the relationship between 
anthropogenic structures of industry and the built environment 
and the natural ecology of the lower Mississippi Delta.

1. System boundary

i. Municipal (political)

ii. Regional (geographic, ecological, etc.)

2. Physical accounting

i. Listing of entities to ‘track’ (key resources)

ii. Data sources
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