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Residence Time Distributions 

We have seen two extreme ideals: 
Plug Flow – fluid particles pass through and leave reactor in same 

sequence in which they enter 
Stirred Tank Reactor – fluid particles that enter the reactor are 

instantaneously mixed throughout the reactor 

Residence time distribution - RTD(t) – represents the time different 
fractions of fluid actually spend in the reactor, i.e. the probability 
density function for residence time 

 

∫
∞

=

0

dt)t(C

)t(C)t(RTD   (for steady flow)   

Note units  -  RTD is in inverse time 

by definition: ∫
∞

=
0

1dt)t(RTD   (i.e., total probability = 1) 

∫
∞

=
0

D dt)t(RTDtt  = first moment of RTD = tracer detention time 

 

RTD math: 
Dirac delta function  (or unit impulse function) 

V Q Q 

Measure dye 
concentration at 
outlet 

Inject slug of dye 
at inlet at t=0 

tR•RTD 

tR 
t 

CSTR 
RTD = 1/tR exp(-t/tR)

Plug flow 
RTD = δ(t-tR) 

1

0.14 

0.38 

2tR 
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Represents a unit mass concentrated into infinitely small space 
resulting in an infinitely large concentration 

δ(t) = ∞ at t = 0, 0 at t ≠ 0 

∫
∞

∞−

=δ 1dt)t(  

Can think of Dirac delta function as extreme form of Gaussian 
M0δ(t-τ) is spike of mass M0 at time τ 

Plug Flow 
RTD(t) = δ(t-tR)     with implied units of t-1 

∫ ∫
∞ ∞

=−δ=
0 0

R 1dt)tt(dt)t(RTD   zeroth moment 

Note lower limit is 0 and not -∞ since you can’t have negative 
residence time  
(i.e., fluid leaving before it entered) 
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tracer detention time 
CFSTR 

RTD(t) = exp(-t/tR) / tR    units of t-1 
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Control Volume Models and Time Scales for Natural Systems 

What are actual systems like?  Plug flow or Stirred reactor 
It depends upon the time scales: 

Mixing time for plug flow reactor is infinite: it never mixes 
Mixing time for stirred reactor is zero: it mixes instantaneously 

When are these assumptions realistic? 
We need to estimate the time of the real system to mix - tMIX 

compared to time to react 
If tMIX << tR → stirred reactor 
If tMIX >> tR → plug flow reactor 



17 

Residence Time and Reactions 

RTD provides a means to estimate pollutant removal 
Consider a 1st-order reaction:  C(t) = C0 exp(-kt) 
This reaction applies to any water mass entering and exiting the system –  

view from Lagrangian perspective (i.e., following the parcel of 
water) 

 
Exit concentration: 
Ce = C0 exp(-kt4) 

Consider a different parcel, taking a longer route: 
Exit concentration  Ce=C0 exp(-kt6)  where t6 > t4 

 

If a plug flow model applies, the exit concentration is simple:  all parcels 
exit at exactly TR  

In a natural system, it is not perfect plug flow, therefore look at RTD 
RTD gives the probability that the fluid parcel requires a given amount of 

time to pass system 
On average: 

dt)ktexp(C)t(RTDC
0

0e −= ∫
∞

 

 
 
At t1  Ce = C0 exp(-kt1) 
 
At t2  Ce = C0 exp(-kt2) 
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Residence Time Distribution for Real Systems 

Real circulation has: 
Short circuiting 
Dead zones (exclusion zones) 

RTD from tracer study ≠ plug flow or stirred tank reactor 

 
Detention time, TD 

tD = ∫
∞

0

dt)t(tRTD   

Note distinction with hydraulic residence time, tR = V/Q 
tD = tR if and only if there are no exclusion zones 

Variance of RTD is a measure of mixing 

∫
∞

−=σ
0

2
D

2 dt)t(RTD)tt(  

As a dimensionless number, 
2

Dt
d ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ
=  

As σ → 0, no mixing, plug flow 
As σ → ∞, complete mixing, CFSTR 

QR 
CI 
At inlet 

QR 
Ce 
At outlet 

Recirculation 

RTD 

t
tD tR 

RTD 

t 
σ 
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Residence Time Distribution for Real Systems 

Review some concepts: 
Two models for mixing 

Plug flow 
Stirred reactor 

Time scales: 
tR = V/Q  mean hydraulic residence time (nominal residence time) 
tREACTION =1/k  (or for 95% complete reaction or removal 3/k) 
tADV = L/u 

Limitations of tR in describing residence times of true systems because of 
dead zones, recirculation, short circuiting 

Consider alteration of the real system: 
Add berms to control circulation! 

Lecture 4.doc 









Figure by MIT OCW. 

Adapted from: Camp, T. R. "Sedimentation and the design of settling tanks."
Transactions ASCE 111 (1946): 895-936.




