MIT OpenCourseWare http://ocw.mit.edu

1.782 Environmental Engineering Masters of Engineering Project Fall 2007 - Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

25 April 2008
Mary Harding, Navid Rahimi, and Katherine Vater
MIT - CEE
Master of Engineering

MAE LA REFUGEE CAMP WATER SYSTEM

- Background and Overview
- Distribution System Modeling
- Distribution System Mapping
- Water Treatment

MAE LA REFUGEE CAMP

- Karen, Karenni, and Mon refugees from Myanmar (Burma)
- 45,000 people

 $Figure\ by\ MIT\ OpenCourse Ware.$

WATER SUPPLY AND GEOGRAPHY

DRINKING WATER SUPPLY OVERVIEW

SPRING WATER SYSTEM OVERVIEW

MAE LA REFUGEE CAMP WATER SYSTEM

- Background and Overview
- Distribution System Modeling
- Distribution System Mapping
- Water Treatment

WATER DISTRIBUTION MODELING

Illustration of EPANET

Model calibration

Example analysis of system modifications

OVERALL EPANET SYSTEM

SAMPLE RESULTS

CALIBRATION OF TAP FLOW

Correlation: 0.61

CALIBRATION OF PRESSURE

Correlation: 0.59

PRESSURE DISTRIBUTION AND LAYOUT

GEOGRAPHIAL COVERAGE: NEW TAPS

TANK LEVELS AT END OF DISTRIBUTION

Figure by MIT OpenCourseWare.

MAE LA REFUGEE CAMP WATER SYSTEM

- Background and Overview
- Distribution System Modeling
- Distribution System Mapping
- Water Treatment

WATER DISTRIBUTION MAPPING

• Example visual output

Geographical errors

• Results: Home distance to nearest tap stand

Under-service volume & time

DISTANCE OF HOMES TO NEAREST TAP

Figure by MIT OpenCourseWare.

SPRING 2 – LOW COVERAGE

Distance to Nearest Tap
 0-25m
 25-50m
 50-75m
 75-100m
 >100m
 Tap Stands

Figure by MIT OpenCourseWare.

ERROR ANALYSIS

- Previous AMI tap stand location data and corresponding elevation error from DEM
- Mostly: 1-2m elevation change per 15m on land
- Closer to mountains: 10-15m change per 15m

HOME DISTANCE TO TAP STAND HISTOGRAM

- Assumes everyone gets water from closest tap
- Nearly 50% of homes within 30-60m range
- Some large outliers with distances >200m (many in SP2 region)

WATER CONSUMPTION AND TRAVEL TIMES

 Trip travel times less than ~3 mins. → increased consumption

Figure by MIT OpenCourseWare.

• If tap within 1.5 min walk or 115 meters

WATER CONSUMPTION AND TRAVEL TIMES

- o 93% of homes have tap within 115 meters
- Excluding SP2 region, over 95% of homes

WATER VOLUME DISTRIBUTION

- Recommended minimum water consumption: 7.5 liters/capita/day (WHO)
- Assuming 6 people/home → 50 liters/home/day
- Use EPANET model results which provides flow estimation for 88 of 129 viable tap stands

WATER VOLUME DISTRIBUTION

Liters per Home per Day (lphd)

- o 360 homes (7%) under-serviced
- o 6 of 88 tap stands

TIME TO COLLECT 50 LITERS

- Compare to available collection time/home
- Based on taps/stand and population density
- Under-serviced: additional 180 homes
- Increase to 10% of homes (from 7% volume)

MAE LA REFUGEE CAMP WATER SYSTEM

- Background and Overview
- Distribution System Modeling
- Distribution System Mapping
- Water Treatment

EXISTING WATER TREATMENT

- Disinfection by chlorination
 - Effective chlorination requires low turbidity levels
 - Treatment goal: Turbidity ≤ 10 NTU
- Horizontal-flow roughing filter at Spring 10

WATER TREATMENT OBJECTIVES

- Study effectiveness of existing filter
 - Improve the filter
- Design a general filter for other springs
- Determine necessary maintenance

2007 TURBIDITY AT SPRING 10

EXISTING FILTER AT SPRING 10

Internal Wall of Filter

Filter Plan View: Potential Short-circuiting

JANUARY 2008 MODIFICATIONS

Baffle Addition to Internal Walls of Filter

Filter Plan View: New

Flow Path

Baffles

RELATIVE FLOW TEST RESULTS

TURBIDITY SAMPLING

Flow Scenario	C _o [NTU]	C _e [NTU]
Dry season, clean filter	38	6
Dry season, dirty filter	30	14
Wet season simulation, clean filter	240	14

COEFFICIENT OF FILTRATION, A

$$E = \frac{C_e}{C_o} = e^{-\lambda L}$$

Flow Scenario	C _o [NTU]	C _e [NTU]	Λ [m ⁻¹]
Dry season, clean filter	38	6	0.15
Dry season, dirty filter	30	14	0.06
Wet season simulation, clean filter	240	14	0.24
Wet season, dirty filter (extrapolation)			0.10

ACHIEVING $C_E < 10$ NTU BY LENGTHENING FILTER

CONCLUSIONS

- Spring 10 Filter Improvements
 - Construct second filter
 - Install outlet weirs
- General Filter Design
 - Not recommendable
- Filter Maintenance
 - Monitor turbidity
 - Clean the filter based on monitoring

MAE LA REFUGEE CAMP WATER SYSTEM

- Background and Overview
- Distribution System Modeling
- Distribution System Mapping
- Water Treatment

2007 FLOW VOLUME BY SPRING

