MIT OpenCourseWare http://ocw.mit.edu

1.782 Environmental Engineering Masters of Engineering Project Fall 2007 - Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Final Master of Engineering Group Presentation – Ghana Team May 30th, 2008

Cash Fitzpatrick Izumi Kikkawa Vanessa Green Tamar Losleben

Andrew Swanton

Presentation Outline

• Ghana: Background and Logistics

- . Horizontal Roughing Filtration: Tamar Losleben
- Household Filtration (Biosand Filter): Izumi Kikkawa
- Chlorine Products: Cash Fitzpatrick
- . HWTS Consumer Choice Study: Vanessa Green
- Ceramic Pot (Kosim) filter + Chlorine Disinfection with Aquatabs: Andrew Swanton

Background

Figure by MIT OpenCourseWare.

Large Percentage of Water Source is Dugouts

(National Statistical Services Survey -CWIQ 2003)

Local Perception: Lack of Clean Drinking Water is a Major Problem

Dugouts

St. Mary's Dam

E-Coli, Total Coliform, and Turbidity of Raw Water Samples from Selected Dugouts During the Rainy Season in Tamale and Savelugu Districts

Location	Date (2006)	E. coli (CFU per 100 mL)	Total Coliforms (CFU per 100 mL)	Turbidity (TU)
Ghanasco Muali Dam, TD	20-Jun	,	**	~1.600
Kaleriga Dam, TD	22-Jun			
Bipelar Dam, TD	27-Jun	1222		
St. Mary's Dam, TD	29-Jun	Line of the second		
Dungu Dam, TD	4-Jul	133	4,540	400
Libga Dam, SD	6-Jul	0	500	75
Bunglung Dam, SD	11-Jul	200	5117	300
Diare Dam, SD	13-Jul	0	3,417	23
Libga Dam, SD	17-Jul	50	1,408	50
Gbanyami Dam, TD	19-Jul	367	19,150	~1,000
Vitting Dam, TD	25-Jul	1,400	12,767	~125
Average		438	12,797	690

Source: Foran, 2007

Presentation Outline

• Ghana: Background and Logistics

Horizontal Roughing Filtration: Tamar Losleben

. Household Filtration: Izumi Kikkawa

• Chlorine Products: Cash Fitzpatrick

. HWTS Consumer Choice Study: Vanessa Green

• Ceramic Pot (Kosim) filter + Chlorine Disinfection with Aquatabs: Andrew Swanton

Pilot Study of Horizontal Roughing Filtration in Northern Ghana as a Pretreatment Method for Highly Turbid Water

Tamar Rachelle Losleben

Objectives

- Characterize dugout particle sizes and distribution
 - Turbidity, settling stability, filtrability, sequential filtration, solids settleability
- Pilot test horizontal roughing filter (HRF)
 - Particle size characterization, turbidity, flow rate, microbial contamination

MIT Clean Water 4 All, Inc.

Slow sand filtration (SSF)

Maximum raw water turbidity:

(Wegelin, 1996; Galvis 1993)

20-50 NTU

99-99.99% removal of microorganisms

(Wegelin, 1996)

Raw Dugout Samples in Tamale and Savelugu Districts (Foran, 2007)

	Dry Season	Rainy Season
Average <i>E.Coli</i> (CFU/100 mL)	779	438
Average Total Coliform (CFU/100 mL)	26,357	12,797
Average Turbidity	248 NTU	931 NTU

Horizontal Roughing Filters (HRF)

Courtesy of SANDEC. Used with permission.

Ghanasco Dam Pilot HRF

Comparison of the Turbidity Reduction Performance of HRF Media

	Average HRF effluent turbidity	Average filtration rates (ml/min)	Average additional turbidity removed by HRF after settling	Average % additional turbidity removed by HRF after	Average % total HRF turbidity reduction	Filtration coefficient , λ (min^-1)
G granite gravel	51 NTU	220 (1.6 m/hr)	46 TU	61 %	84 %	0.002
D local gravel	72 NTU	170 (1.3 m/hr)	30 TU	47 %	76 %	0.0007
P broken pottery	61 NTU	200 (1.5 m/hr)	18 TU	55 %	80 %	0.0006
Goal:	< 50 NTU	41-270 (0.3-2.0 m/h)				

Ouagadougou Pilot HRF

International Institute for Water and Environmental Engineering Burkina Faso

- June 5 July 28, 2006
- Loumbila Dam (Sylvain, 2006)

Comparison of Pilot HRF Performance

	Blue Nile Health Project, Sudan (referenced by Wegelin, 1996) Ghanasco Dam, Tamale, Northern Ghana (Losleben, 2008)		Ouagadougou , Burkina Faso (Sylvain,			
Media	broken burnt bricks	gravel	granite gravel G	local gravel D	broken pottery P	quartagyjavel
Average filtration rate (m/h)	0.3	30	1.6	1.3	1.5	1.0
Filter length and media size (mm)	270 cm, 85 cm, 85 cm,	30-50 15-20 5-10	250		2-18 8-12 4-8	400 cm, 15- 25 150 cm, 5-15
Raw water turbidity	40-500) NTU	313 NTU	301 NTU	301 NTU	5-50 NTU
Prefiltered water turbidity	5-50	NTU	51 NTU	72 NTU	61 NTU	4-19 NTU
Faecal coliforms*						
(/100ml) Raw water	> 300		8400	8400	8400	
Prefiltered water	< 25			15500	500	
Mean turbidity reduction	77 %	87 %	84 %	76 %	80 %	32 %

^{*} as *E.coli*

HRF Channel Design

Figure by MIT OpenCourseWare.

Presentation Outline

- . Ghana: Background and Logistics
- . Horizontal Roughing Filtration: Tamar Losleben
- Household Filtration (Biosand Filter): Izumi Kikkawa
- . Chlorine Products: Cash Fitzpatrick
- HWTS Consumer Choice Study: Vanessa Green
- Ceramic Pot (Kosim) filter + Chlorine Disinfection with Aquatabs: Andrew Swanton

Background ~Biosand Filter (BSF)~

- Household treatment
- Intermittent slow sand filtration
- Removes:
 - >90 % of *E.coli* bacteria
 - 100 % of protozoa and helminthes (worms)
 - 50-90 % of organic and inorganic toxicants
 - <67 % of iron and manganese
 - most suspended solids
- 270,000 BSFs installed in 25 countries
 - Disadvantages:

Figure by MIT OpenCourseWare.

Diagram of Biosand Filter

- does not suite treatment of high turbid water
 - » Decline in treatment efficiency, frequent clogging and maintenance requirement

Turbidity Limit ~50 NTU

Local Plastic Design BSF

Biolayer: schumutzdecke, biofilm

- most purification proceeds here
- estimated to be 5-10 cm in depth¹

Modification: Create additional biolayer oxygen diffusion is essential

1) B.J.Buzunis, Intermittently Operated Slow Sand Filtration: A New Water Treatment Process, March 1995

Results & Discussion -Flow Rate-

	LPD BSF	average flow rate [L/hr] (standard deviation)		
Α	(without modification)	32.0 (4.1)		
A'	(without modification)	25.9 (4.9)		
В	(additional 5 cm sand layer)	21.8 (6.0)		
С	(additional 10 cm sand layer)	21.1 (4.3)		

lower flow rates for BSF B & C

No clogging

Results & Discussion -Turbidity-

Dugout and BSF		Average turbidity [NTU] (standard deviation)		
Dug	gout	306 (97)		
Α	(without modification)	22 (17)		
Α'	(without modification)	20 (14)		
В	(additional 5 cm sand layer)	15 (6.8)		
C (additional 10 cm sand layer)		14 (1.4)		

Results & Discussion - Turbidity-

After day 13

	BSF	average turbidity removal (standard deviation)		
Α	(without modification)	92 % (7 %)		
Α'	(without modification)	93 % (6 %)		
В	(additional 5 cm sand layer)	95 % (2 %)		
С	(additional 10 cm sand layer)	95 % (1 %)		

Results & Discussion -Microbial-

Hydrogen Sulfide Bacteria; Presence/Absence

Day	30	38	43	46
Dugout	30000	Present	Present	Present
BSF A	0		Present	Absent
BSF A'	300	Absent	Absent	Present
BSF B	200		Absent	Absent
BSF C	0		Present	Absent

E. Coli mostly not detected in influent/effluent

Discussion -LPD BSF-

Flow Rate

- Modified BSFs had slower flow rates
 - Due to additional basin with sand
- All BSFs had not clogged after 46 days of operation

Turbidity

- Dugout: wide variation
- Filter ripening: after 13 days
- Modified BSFs showed slightly higher turbidity removal
 - Decline in BSF A & A': operation conditions ? cleaning?
 - No decline in BSF B & C: could be benefit of modification
 Able to withstand more operational variation, or less frequent cleaning

Total Coliform Removal

- No quantitative data after filter ripening (Day 13)
- 86 % removal with average effluent of 430 cfu/100 ml (on Day 11)

E. Coli

Mostly was not detected in influent/effluent

HydrAid™ BioSand Filter

- Approximately 200 HydrAid BSFs installed (December, 2007) in Kpanvo Village
- By International Aid
- Additional layer of superfine sand

Tests conducted at 30 households:

- Turbidity
- •E.Coli
- •Total Coliform
- •flow rate

**Average turbidity not high

Dugout ~85 NTU

Influent ~ 32 NTU

Results & Discussion -Flow Rate-

Design Flow Rate 47 L/hr

- •measurements not taken at maximum head thus slower than design flow rate
- •cleaning every 3 days
- clogging was not problematic

average flow rate: 17 L/hr

Results & Discussion -Turbidity-

Results - Microbial-

Total Coliform

log₁₀ Removal of Total Coliform

Average Removal units, 95 %

1.9Log₁₀

Average Effluent 710 cfu/100 ml E. coli:

detected in 9/22 samples (influent) average influent 960 cfu/100 ml (9 samples) 55 % removal

Discussion -HydrAid BSF-

Flow Rate

• Slower than design flow rate, but not problematic

Turbidity

- Influent: relatively low turbidity
- Effective in turbidity removal average removal 87 %, average effluent 2.9 NTU

Total Coliform

- Effective in total coliform removal average removal:1.9 log10 units, 95 %
- Effluent concentration is high: 710 cfu/100ml

E. Coli

• Only detected in limited # of samples

Summary

		Locally Plastic Design BSFs	HydrAid DCE
		unmodified; modified	HydrAid BSFs
Design Flow Rate		15-20 L/hr	47 L/hr
Measured	l Flow Rate	29 L/hr; 21 L/hr	17 L/hr *
	influent	227 TU	32 NTU
Turbidity	effluent	16 TU; 11 TU	2.9 NTU
	removal	93 %; 95 %	87%
Total	influent	15,000 cfu/100ml	20,000 cfu/100ml
Total Coliform	effluent	430 cfu/100 ml **	710 cfu/100ml
	removal	87 % **	95%
Cost		\$ 16 - \$ 25	\$ 50 - \$ 65

*

Not measured at maximum head

** *** Average values on Day 11

Average value after 30+ days of operation

Local Plastic Design Biosand Filter Summary:

- Slower design flow rate
- Higher influent turbidity, higher percent removal
- Lower percent total coliform removal, lower effluent concentration
- Much less expensive

Presentation Outline

- Ghana: Background and Logistics
- . Horizontal Roughing Filtration: Tamar Losleben
- . Household Filtration (Biosand Filter): Izumi Kikkawa
- Chlorine Products: Cash Fitzpatrick
- . HWTS Consumer Choice Study: Vanessa Green
- Ceramic Pot (Kosim) filter + Chlorine Disinfection with Aquatabs: Andrew Swanton

Overall Goal: To Compare HTH Chlorine Dosing System

with Aquatabs

- Thesis Title: "Efficacy of Gravity-Fed Chlorination System for Community-Scale Water Disinfection in Northern Ghana"
- Specific Objectives
 - To take Pulsar 1 System* and convert it for drinking water usage for community scale chlorination
 - Based on current capacity, need to significantly lower output residual chlorine concentrations
 - CDC: <2mg/L after 30 mins and >0.2mg/L after 24 hours
 - Compare different chlorine options (community scale versus household scale

Pulsar 1 system is unique in being a highly accurate chlorine dosing system that does not require electricity (gravity feed). It was designed for large-scale swimming pools, but we hypothesized that it might be appropriate to adapt for developing country contexts such as schools, hospitals, and rural communities.

• Operates in parallel with water line (diverts some flow and re-injects downstream)

Figure by MIT OpenCourseWare.

MIT Clean Water 4 All, Inc.

Field Work Site

Water Source: Elevated Tank

Modifications Made in Ghana

Modifications

- Added ¼" Spiked Grid
- Enlarged "Emergency Shutoff Valve"
- Added a dilution nozzle
- Reduced the inlet/outlet flows

Results

- Less contact with chlorine tablets in dissolving cup
- Divert more influent water away from the chlorine tablets
- Decreased total flow in and out of Pulsar unit

Field Work Results

- Successfully lowered concentrations to drinking water levels in Ghana

But There's a Problem...

- This final modification causes frequent O&M problems
 - Low internal flow rates leads to chlorine buildup of tubes & parts
 - Is therefore unsustainable

Further Research at MIT Lab MIT Clean Water 4 All, Inc.

• Installed new parts to increase Pulsar's internal dilution capacity

- Emergency Shutoff Valve Pulls more water into the Pulsar unit
- Dilution Nozzle Assembly Diverts more of this water away from the dissolving cup

Cambridge Lab Work Results

- Partially successful in lowering chlorine concentrations to drinking water levels

Results: HTH vs. Aquatabs on Supplies Cost

HTH is <u>48X</u> Times Cheaper!

Results: HTH vs. Aquatabs on Treatment Cost (cont)

Includes: Price of chlorine, Pulsar 1 & Kosim filter, and

operational cost of Pulsar

Pulsar 1 + HTH is *much* more economic on a volumetric (\$/m3) basis!

Overall HTH vs. Aquatabs Comparison

	Kosim Filter with Aquatabs	Pulsar 1 Unit with HTH
Maximum Flow Rate	Low (1-7 L/day)	High (>100,000 L/day)
Can Serve Many People		• • •
Cost of Treatment (\$/m³)	• •	• • •
System Lifetime	~2 years*	~10 years*
Low Initial Cost (\$)	• •	
Low Running Cost (\$/yr)	• • •	• •
Simple O&M	• • •	• •
Materials Availability	• •	• •
*Value Assumed by Author	Poor # = Moderate	💮 🤴 🐞 =Good

There is no "single best option", so site-specific circumstances will dictate the appropriate technology

Presentation Outline

- Ghana: Background and Logistics
- . Horizontal Roughing Filtration: Tamar Losleben
- . Household Filtration (Biosand Filter): Izumi Kikkawa
- . Chlorine Products: Cash Fitzpatrick
- HWTS Consumer Choice Study: Vanessa Green
- Ceramic Pot (Kosim) filter + Chlorine Disinfection with Aquatabs: Andrew Swanton

Consumer Choice Research MIT Clean Water 4 All, Inc. Objectives - Assess the relative value and cost of HWTS options in

- Northern Region, Ghana
- Make recommendations about which products are likely to have the greatest impact on local drinking water quality based on product effectiveness, adoption and sustained use

Team included: Vanessa Green, Gaetan Bonhomme, Avani Kadakia, Gabriel Shapiro, Matt Thomson, Musah Abdul-Wahab, Jaafar Pelpo, Ibrahim Mohammed Ali, Alhassan Tahiru Senini & Susan Murcott

Field Research: Study Design

Final survey instrument included three elements:

- Baseline survey: water management and ability to pay
- 2. Water quality testing (microbial and turbidity)
- 3. Conjoint (choice task) to assess product feature preference

Results: Household Demographics

			House Ty	pe (Roof)	Educ	ation	Average
Туре	Gender (% Female)	Religion (% Muslim)	% Tin	% Thatch	Primary	Secondary	Household Size
Urban (n=118)	77%	94%	100%	5%	51%	31%	12
Rural (n=119)	70%	86%	15%	97%	19%	3%	13

Low rural education

Significant
difference in house
type between rural
and rural
communities

Similar household size, urban result different from previous work in middle income areas

Results: Water Source Access & Challenges

- Majority of urban and rural respondents
 collect rainwater
- Urban respondents get water from a private tap or a neighbor (infrequent flow, taps open 2-4x / month)
- Rural respondents use
 a dugout, some access
 boreholes / standpipes

Key Challenges:

Quantity & Recontamination

Results: Needs Assessment

Household Drinking Water Quality

	Turk	oidity	Tot	al Coliform	(TC)	E.	Coli		
Туре	Ave. (TU)	Max. (TU)	% with CFU	% >1000 (CFU / 100ml)	Ave. (CFU/ 100ml)	% With E.Coli	Ave. (CFU/ 100 ml)		
Urban (n=118)	<5	<5	59%	26%	2,500	8%	47	⇒	Recontamination remains a challenge
Rural (n=119)	238	1000	89%	82%	18,800	26%	172	⇒	Highly turbid source water, and significant contamination

Results: Current Water Management Practice

Urban and Rural Water Treatment Methods

Significant adoption of cloth filter in rural areas where distributed

Limited use of other treatment products, with the notable exception of alum in rural areas

Results: Ability to Pay

Urban Households:

- Average income of GHS 1,530 / yr
- Ability to pay for water GHS 0.21 / day*

Rural Households:

- Average income of \$619 / yr
- Ability to pay for water GHS 0.08 / day*

"If you are going to bring an expensive filter to this village you need to bring it at the time of year that we have just finished farming" — Rural respondent, Golinga.

Note: Ability to pay calculation assumes that 5% of daily income allocated to water

Results: Purchasing Location

Results: Conjoint Attribute Importance

Attribute importance quantifies the effect that each of the HWTS product attributes selected had on a respondent's overall product preferences; Urban and rural communities had similar attribute importance rankings

Source: G-lab Final Report, February 2008

Results: Consumer Preference

Rural Consumer Preference

- **Health impact** was most important to both urban and rural respondents
- **Durable products**favored (respondents want something that will last)
- Short treatment time more important in urban
- Slight preference for clear/crisp (urban) and clear/ chlorine (rural)
- **Higher prices** preferred in urban areas, limited price sensitivity in rural

HWTS Product Options Assessment

Туре	Household Water Product		Turbidity Efficacy	Microbial Efficacy	Local Availability	Annual cost (GHC) / family*
	Cloth Filter		Low	Low	High	0.0
Particle	Alum		High	Low-Moderate	High	2.2
Removal	BioSand	Local LDP	High	Moderate	Low	10
	Filter	Int. Aid	High	Moderate	Low-Moderate	22
Davtiala	Pot Filter (Ko	osim)	High	Moderate	High	10
Particle	Candla	OK	High	Moderate	Moderate	14
Removal & Safe	Filter	Mission	High	Moderate	Low	50
Storage		Berkefeld	High	Moderate	Moderate	136
	SODIS (UV)		Low	Low-Moderate	Moderate	8
D' C	HTH Chlorin	ie	Low	High	Low	0.3
Disinfection	Liquid Chlorine		Low	High	Low	2 - 5
	Aquatabs (20l)		Low	High	Low-Moderate	13
Coagulation & Disinfection	PuR TM (P&G)	High	High	N/A	45 - 80
Safe	Locally Manufactured		N/A	N/A	Low	1.2
Storage	CDC (SWS)		N/A	N/A	Low	2.4
Carlord WV	Hand-tied (single)		N/A	N/A	High	275
Sachet Water	Factory (wholesale)		N/A	N/A	High	657

Note: Annual cost per family was estimated by calculating using an anticipated average household size of 12 individuals and 2 liters of drinking water per individual per day.

HWTS Product Assessment Description

- Particle removal: Alum and the Kosim ceramic pot filter have the most potential in the short term as they are low-cost, they effectively reduce turbidity (and microbial contamination), and are available in northern Ghana.
 - The OK candle filter and biosand filters (locally manufactured and International Aid) have longer term potential
- <u>Disinfection:</u> UV has not been shown to be highly effective given high atmospheric dust seen in northern Ghana, and thus chlorine disinfection emerges as the priority option.
 - Chlorine disinfection is less effective in water with turbidities >30 NTU, thus in rural areas with turbid source water chlorination should be used in conjunction with particle removal
 - PuRTM offers a simple solution as it combines both particle removal and disinfection in a single sachet; however, the relatively high-cost and lack of availability in the region reduces the attractiveness of this option
- <u>Safe storage</u>: Low-cost safe storage options have the potential to enhance protection from recontamination, particularly if used in conjunction with chlorine disinfection.
- High end products: The more expensive Mission and Berkefeld candle filters
 as well as sachet water product should be targeted to upper and middle class

Market Segmentation

- Objective: Describe the household water treatment landscape in terms of observable differences between sample populations
 - To facilitate the development of targeted HWTS interventions

• Market Landscape:

 The vertical axis is source water, defined by community location and water quality

– The horizontal axis is profession which serves as proxy for both income and daily activity

	ESPONDENT PROFESSION ATER	Housewife	Agricultural	Production Worker	Sales & Other	Trader	Profess- ional
Url	ban						
Dural	Clear Water						
Rural	Turbid Water						

• **Segmentation:** Based on observed HWTS preference the eighteen respondent types were combined into five segments, and priority HWTS products were matched to each segment

HWTS Market Landscape, N. Ghana

Priority HWTS products were matched with each segment based on observed differences in: 1) source water quality, 2) ability to pay and 3) consumer preferences

HWTS Recommendations by Target

Segment Priority Options: Product Effectiveness, Adoption and **Sustained Use**

Target Population

• Develop a **safe storage product** – strong preference for traditional durable, significant recontamination challenge

- Consider local manufacturing of a low-cost HWTS chlorine product (e.g., HTH or Liquid Chlorine)
- Develop a **chlorine treatment protocol** for communities with non-turbid water – specifically dosing within 24h of consumption to combat recontamination due to long storage
- **2a**
- Opportunity for a targeted sachet water business that focuses on the urban upper and middle class

• Opportunity for low-cost combined treatment products in communities with turbid source water (e.g., Alum / Biosand / Kosim + Chlorine Disinfection (Aquatabs)

Focus Kosim sales / distribution on rural areas with turbid water, and continue to develop the biosand for this market

Presentation Outline

- Ghana: Background and Logistics
- . Horizontal Roughing Filtration: Tamar Losleben
- . Household Filtration (Biosand Filter): Izumi Kikkawa
- . Chlorine Products: Cash Fitzpatrick
- . HWTS Consumer Choice Study: Vanessa Green
- Ceramic Pot (Kosim) filter + Chlorine Disinfection with Aquatabs: Andrew Swanton

Overview

- 3-Week Pilot Study: Combined *Kosim* Filter and Aquatabs System
- •59 Households: 24 lower-class, 35 lower middle-class
- •Baseline: Survey, WQ Testing, Distribution of Jerry Cans, Aquatabs
- •Follow-up (1 Week Later): Survey, WQ Testing

Baseline Survey Results

16 Questions to Gauge User Acceptability, Appropriate Cleaning, Perception

Key Questions and Results:

•From where do you collect your water?

95% dugout

•How many times per week do you add water to

the *Kosim* filter?

2.9

•Can you act out for me how to clean the filter?

100% yes

•Do you like the taste of the filtered water?

100% yes

Follow-Up Survey Results

8 Questions to Gauge User Acceptability, Perception with Addition of Aquatabs

Key Questions and Results:

•Do the Aquatabs improve the taste of the water? 100% yes

•Would you recommend the use of Aquatabs

to others? 100% yes

•Have you had any problems using Aquatabs? 100% no

•Specific Problems: "not comfortable", hernia/urine more yellow, stomach aches

Cost Results

Aquatabs cost 3 pesaws (=3 cents) per tablet, 3 GHC (=\$3 US dollars) for 100

- •Question: "Would you spend 3 GHC for 100 Aquatabs?"
- •If no: "What do you think a fair price is for 100 Aquatabs?"
- •Kalariga (lower-class): 25% willing to pay 3 GHC, 1.8 GHC average
- •Kakpagyili (lower middle-class): 94% willing to pay 3 GHC, others 1,2 GHC

Water Quality Data

Dugout

	1	
2/10/2007		
Tuchidity	TC	

1 18.5904 15011	n	Turbidity	TC	EC
		(NU)	(CFU/100mL)	(CFU/100mL)
Kalariga	1	400	6,200	67
KakDam1	1	400	11,000	<100
KakDam2	1	1200	23,000	1,000

	n	Turbidity	TC	EC
		(NU)	(CFU/100mL)	(CFU/100mL)
Kalariga	1	150	5,000	100
Kakpagyili	2	200	6,000	<100
Total	3	180	5700	67

Post-Filtered

Post-Aquatabs

	n	Turbidity	TC	EC
		(NU)	(CFU/100mL)	(CFU/100mL)
Kalariga	24	16	2,200	61
Kakpagyili	35	17	2,900	60
Total	59	16	2,600	60

	n	Turbidity	TC	EC
		(NU)	(CFU/100mL)	(CFU/100mL)
Kalariga	24	11	2,000	<100
Kakpagyili	35	38	900	110
Total	59	27	1,300	86

MIT Clean Water 4 All, Inc.

% Reductions

•(-)ve % reductions, indicate % increase

Turbidity Test Results-Kalariga

Limit of Detection: <5 TU, Displayed as 2.5 TU

Turbidity Detected, Baseline: 3/24, Post-intervention: 2/24

Turbidity Test Results-Kakpagyili

Limit of Detection: <5 TU, Displayed as 2.5 TU

Turbidity Detected, Baseline: 2/35, Post-intervention: 8/35

MIT Clean Water 4 All, Inc.

Total Coliform Test Results

3M Petrifilm Test

Image of a petri dish removed due to copyright restrictions.

Community	Households with No TC Detected					
	Baseline	Post-Intervention				
Kalariga	5/24=21%	12/24=50%				
Kakpagyili	21/35=60%	26/35=74%				
Both	26/59=44%	38/59=64%				

Community	TC Count Decreased	TC Count Increased	TC Count Remained the Same
Kalariga	15/24=63%	3/24=13%	6/24=25%
Kakpagyili	12/35=34%	7/35=20%	16/35=46%
Both	27/59=46%	10/59=17%	22/59=37%

E.Coli Test Results

Community	Households with No EC Detected		
	Baseline	Post-Intervention	
Kalariga	21/24=88%	24/24=100%	
Kakpagyili	31/35=89%	34/35=97%	
Both	52/59=88%	58/59=98%	

Average EC concentrations higher in follow-up?

- •1 household during follow-up with *E.Coli*: 2,200 CFU/100mL
- •7 households during baseline with *E.Coli*: 50-200 CFU/100mL

Free Available Chlorine Test Results

% of Households with FAC level > 0.1 mg/L at follow-up

Kalariga: 63%, Kakpagyili: 66%

MIT Clean Water 4 All, Inc.

Flow Rate Test Results

Description	Age	Turbidity (TU)	TC (CFU/100mL)
New, Filters, Clear Water	0	0	0
New Filters, Dirty Water	0	200-300	2,150-100,000
Old Filter, Dirty Water	1 year	400	6,200

MIT Clean Water 4 All, Inc.

Summary

- •Average TC Conc. Reduced by 50%
- •TC: 46% reduced, 37% same, 17% increased from baseline to post-intervention
- •No TC: 44% to 64%, No EC: 88% to 98%
- •64% Households had FAC > 0.1 mg/L at follow-up
- •FAC b/t 0-0.25 mg/L: 32% increased, 32% decreased (TC conc)
- •FAC b/t 1.01-2.00 mg/L: 67% increased, 8% decreased (TC conc)
- •All survey respondents: "improved taste of water" "would recommend to others"

