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8 Surface Processes

#Mass Exchange
a Volatilization
s Reaeration

#Momentum Transfer
= Oil spills

#Surface Heat Transfer
= Lake temperature models




Air water exchange

N

Equilibrium: Henry’s Law

C Coe

H =%
CI

e

Typical units for [H]:
atm-m3/mol (K,) or dimensionless (K;")
For air K" ~ 42 K,




Two-film theory Ki

Ex: J, =k (c —c.) 2 | e N
liquid
side J, =D (G —Ce)

ZI

kI (CI = Cle) = kg (Cge - Ce) = k(CI = Cg / H)

H — g 3 egns, 3 unknows (C,, Cye, K)

ges



Two-film theory

1.1 1 « _o _K(Hg —¢)
k k  Hk, © 7 Hk,+k
k,(Hc, —c¢

1 2 C -G, = 6 (16 ~C,)
Hk, +k

Resistances in series:
ki << Hk, => 1 dominates (liquid side controlled)
ki >> Hk, => 2 dominates (gas side controlled)

Medium with lower equilibrium concentration controls




Typical values for air and water

“Typical” values for air (as gas)
D00 0.1-cméfs, 0.1 <.z, <-1.cm
=> K, = Dg/z, = 0.1t0 1 cm/s
“Typical” values for water (as liquid)
D, ~ 2x10~ cm?/s, 0.002 < z < 0.02 cm
=> k; = D)/z, = 103 to 102 cm/s

Ky ~ 100 k; so if H >> 0.01 then water side controlled
(think DO); if H << 0.01 then air side controlled (think
evaporation)




'Example of liquid side control

9

H >>0.01; assume H ~ 1 => ¢, = C, = C,

Zg ] \
C
¢ C k (Hc, —c
5 - > C C.—C, = (He g);(cl—cg)ﬁ
Cg\ Hkg+kl kg
y A
| + C.C,
K,(Hc, —c
ol c —C, = 6 (16 g);(c,—cg)
Hk, +k




‘Liquid side control, cont'd

If we double k, (halve z),
(ce-C4) doubles, both
gradients ~ double => twice
the mass flux; red line

If we double k, (halve z),
(Ce-Cy) is halved, both
gradients ~ const => similar
mass flux; green line

Therefore mass flux
controlled by liquid side




Surface Renewal Theory

#Described previously for stream-
reaeration formulae (Chapter 7)

#2, (or z, or &) not stagnant, but time-
dependent ~ [Dt]Y/2, where t is
reciprocal of a renewal rate, depending
on bottom generated turbulence.

#Thus k, (hence k) = D/z, ~ D2




Measurement of gas exchange

N

# Gas-evasion experiment: introduce chemically
conservative gas (e.g., CO,, propane, radon)
at ¢ > saturation, and watch c decline with
distance due to volatilization

# In open water bodies (or rivers where you
don‘t know flow rate) introduce a second,
non-volatile tracer such as salt.

# Sometimes use tracer of opportunity




Application to rivers

S
S
/ T~— |
_— |
M, (propane) o =M
nv
c . M, (salt) Q
c, m, c, M xihe
1 O Q
Cv s m/ e—klx/hu
el ° Cnv rnnv
0 -y (stream reaeration

hu/k,

coefficient K, = k/h)



Gasses other than oxygen

#K, ~ D (stagnant film), D2 (surface
renewal), D%3 (split the difference)

#From Chapter 1, Sc = v/D ~ MWP (b ~
0.35 to 0.4)
#K_ /K ~ (Dy,/D)?3 ~ (32/MW) /4
#Example: Propane C;Hg, MW = 44
= K /K = (32/44) -1/4 = 1.08
= Calibrations actually shows K_/K ~1.39




How far downstream must one go?

V

#(Q'Connor-Dobbins at 20°C:
Ky = 3.9u %>/ht->
#u=03m/s,h=1m,K, =2.1d?!

#x~ u/K, = (0.3 m/s)(86400s/d)/(2.1d!)
~ 12 km




Application to open waters

N

K h = water depth or
- ; X thermocline depth
g | <
M, (propane) QRN Bt
. \ 27touhn
M., (salt) .
. m, e—yZ/ZGZe—k|x/hu
A v
Cv mnv A/ 2ﬂ'O'Uh
—1 - .
Cov M, b C, _ m, e—klxlhu
Cnv ri']l"IV
el -
00 -y

hu/k,




Mass transfer in lakes and
oceans

N

# Most contaminants of concern are water side
controlled (e.g., DO, VOC)

# In rivers, source of turbulence is bottom
roughness

# In deep water bodies (lakes, oceans) it is
wind stress => u, (water-side friction
velocity) which affects z,

# Contaminants that are air side controlled also
affected by wind (through z,)
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Wind Stress

A

U,(2) /

>

Uy(2)

T= (-:101061“102 T /‘)\/\/l*lwk2 Uy = 10 m wind
speed;
u i Clopa u
W —,0 10 C,, = drag coef.

C,o = (0.8+0.065u,,) x 103
[Ujg > 1 m/s; Wu, 1980]
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K, (Or z;) VS Uy,
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'Example film coefficients

k, = 0.0004+ 0.00004u,,’
k, =0.3+0.2u,,

ki and k, in cm/s; u,q in m/s [Schwarzenbach et al, 1993]

Note that both depend on uy,
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Examples

Above egns:
U;g = 5 m/s => k, = 1.4x103 cm/s (green dot);
kg = 1.3 cm/s

Figure 8.8:
z,=06 =120 um = 1.2x10% cm.
For DO, D = 2x10> cm?/s
ki=Dfz, = 2x10/1.2x10-% = 1.7x10-3-cm/s-(red dot)
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Volatile Halogenated Organic
‘Compound (VHOC) Experiment

#CH,Cl; and other one carbon VOCs
(THMs) and two carbon VOCs (solvents)
discharged with waste water.

#Used to

m COM
resic

pute volatilization (assuming known
ence time) or

m COM

pute residence time (with known

volatilization)




TCE data in Boston Harbor

N

TCE loading from Deer & Nut
Island TPs: 24 m3/s at 11 ug/L

.. 34:” 2'3 280
o240 | N\
2% » W0 - Ave harbor TCE
I;-W.H:u 3o %00 30 concentration
) 40
€ . 18d 241 ng/L (all pts)
S . 180 3g 214 ng/L (excl. 840)

190 |99 eo
L

Harbor volume =
6x108 m2

Kossik, Gschwend & Adams, 1987
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TCE Experiment, cont'd

Nominal residence time (w/o volatilization;
excluding presumed outlier)

w_ OV _ (214x10 kg / m*)(6x10° m®) &6
Q.c.— (24m*/s)(86400s/ )10 Pkg/im*)—-




TCE Experiment, cont'd

N
\J

With volatilization
k = piston velocity ~ k, (water

d
V d—f: =—-kAc-Q, side control)
dc kA0 k* = bulk removal rate (t1)
dt ( \Y Vj V/Q = t = hydraulic res time
ﬁ—l
K*=1/’C* kA/V - k/h

For CH;Cl; H = 1.13 (dimensionless) >> 1 => ws control

D = 1.0x10> cm?/s
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TCE Experiment, cont'd

From Figure 8.8 and u;; = 5m/s, 6 = 1.2x102 cm

k =D/& =(1.0x10~)/(1.2x10-2)= 0.00083 cm/s = 3
cm/hr = 0.72 m/d

1/t¥ = 1/t + k/h
1/t = 1/t* - k/h = (1/5.6d) — (0.72 m/d)/6m
=0.18 — 0.12 = 0.06dt => 1= 17 d

Estimated < is too high; reason is likely extraneous
or under-accounted sources of CH;Cl;




Momentum Exchange

#Chapters 2, 3 discussed surface shear
stress for eddy diffusivity and
hydrodynamic modeling

#® Previous section discussed stress as
source of turbulence governing mass
exchange

#Also of interest in transporting floating
material, specifically spilled hydrocarbons
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Oil Spills

# Composition
# Fate

# Transport (spreading,
advection)

# Clean-up




Marine Sources (103 MT/yr)

L

N

N. America| Global
Natural Seeps 160 600
Petroleum Extraction 3 38
Petroleum Transport 9 150
Petroleum Consumption 84 480
Total 260 1300

About half is anthropogenic (Oil in the Sea lll, NRC, 2003)
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Composition

# Crude and Refined
Qils
# Always multiple

constituents

# Characterized by
Boiling Point (or
distillation cut)




4# Volatilization (lighter
fractions)

4 Emulsification
(depending on oil)

# Natural dispersion (if
enough energy)

# Biodegradation
# Dissolution
# Photo-oxidation

# Sediment particle
interaction

Output from NOAA’s ADIOIS
model; independent of transport




Transport Models

#Spreading and Advection
#Pre-planning (evaluate risk)

#Real-time (assist clean-up; needs to be
quick and dirty)

#Hind-cast (who is responsible, damage
assessment)




‘Simple advection model

A

f f f
U,(2) / Ta=—Palla = — PulUs =0,)" =—5p, (Au,)
foaf o SUs_ |Paggg
U, Pu
, Surface current speed ~ 3% of
Us wind speed. (Also explained by
Stokes Drift due to surface
Un(2) waves)
In which direction?

2



Ekman Model

N

Linearized equations of motion; constant viscosity

2
‘Z_ltj_gv — EZ_L; Q =2wsing Coriolis parameter
Z
2 .
% +Qu = Ea—\zl W=U+IV  Complex velocity
t 0z
w=0 At depth (z = - 00)

T+r
W _Tx "ty At surface (z = 0)
0z Pu




Ekman Model, cont'd

N

w=— 3 exp 1/£(1+i)z+i—7z
pW«/EQ 2E 4

y I Surface drift 45° to right;

0 Depth average drift 90° to right

Z
Field experiments show surface

drift ~ 10° to right. Explained by
"/ " X variable vertical viscosity E ~ z
Z (Madsen, 1977)




Other effects of wind: Coastal

N

Upwelling/Downwelling




Other effects of wind: Langmuir
Circulation

N

B

Figure by MIT OCW.




Idealized Spreading (Fay, 1969)

N

L

D

»
»

th

s

C;_[t) ~.Jg'h~ %Jg'v Gravity-Inertia

1 2
d_D A t Gravity-Viscous
dt D> \o,

d_D~ f, L Surface Tension-Viscous
d p,D\v,




Idealized spreading, cont'd

Regime

Tension-Viscous

Gravity-Inertia |D = 2k,[g'Vt?]1/4 K,=1.14
Gravity-Viscous | D = 2k,[g'V#3/2/v,, 1/2]1/6 | K,=0.98
to 1.45
Surface D=2k,[ft3/p, 2V, ]/ K;=1.6




Comments

N

about 0.1 mm

= [Ime-varying spi

= Wind, waves anc

# Theory applies down to slick thickness of

# Additional spreading due to

lage
non-uniform currents

= Dispersion of submerged (slower moving) oil

droplets

# Field experiments show oil often very non-

uniform (90% of

volume in 10% of area)
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Oil Transport Models

# Slick advected with underlying surface current
plus 3% of wind speed (~10% deflection to
right)

# (3-D) models simulate transport of sub-
surface dispersed oil.

# Currents can be observed or predicted
(sophistication depends on application—
available time)

# Fate processes often computed independently
from transport




Model Simulations

N

L

25°30'N
Cone Ares
ppm km"2
001-05 3076
Bos-t &.41
-5 1746
5-1o &
m-so 13
>50 o
Total Area = 63 92
Depth: 0ta 1 m
25°28'N
z5°18'N
-
+
z500'H

28 72 G

2690 W

Concentration (rmg/L)
S0.0

Ay and Max Concentration Over Selected Triangles vs. Time

Depth range @ O to 5 meters

Toxicity Thresholds
1 for Crustaceans
1 Low Concern
1 — Medium Concern
00 —_— e
o 24 43 T2 FE

Tirne (Hours since Dispersant dpplisd)

NOAA’s 3D GNOME; ANS Crude off Coast of Florida




Mechanical Clean-up

p
N .
Qil Containment Boom
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Chemical Dispersion

# Surfactants that reduce
interfacial tension

# Create dispersed

droplets
# Subsurface/bottom

impac!

(S VS

surface/shoreline

# Air (large spills) or boat
application

# Window of opportunity




Chemical Dispersion, cont'd

Application

Hydrephilic

Group

? Lipophilic

NRC, 1989

Group

Hydrophii
Portion of
Dispersant
Prevents
Droplet
Coalescence ——

Surfactant-Stabilized
Oil Droplets
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In situ Burning

# Considered secondary option (like chemical
dispersants)

# Most appropriate for offshore spills (reduced

AQ impacts)

""""




Surface Heat Transfer
and Temperature Modeling

#Surface heat fluxes
#Linearized surface heat transfer
#Cooling ponds

#Natural lakes and reservoirs
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Importance of Temperature

#Important WQ parameter
= Thermal pollution
m Species preference (fish habitat)

@ Affec

'S rate constants

| K=K206T-20
#Produces density stratification

mp =
#Impo

p(T)
rtant tracer (e.g., E,)
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Surface Heat Transfer (W-m-2)

¢l/ $a Dor be O
Net solar, ¢., 60 to 300
Net atmospheric, ¢, 200 to 450
Back radiation, ¢, 250 to 500
Evaporation, ¢, 0 to 350
“Conduction”, ¢, -70 to 200

On =0y +Pan —Ppr —Pe — O




Solar Radiation

#Short wave length (< 3um)

#Direct plus diffuse (scattered, reflected)
#Absorbed & re-radiated (> 3um) by clouds
#Measured by pyranometer

#Incident clear sky radiation calculated from
latitude, date and time of day

# Corrections for cloud cover and reflection




Net Solar Radiation (cont'd)

o

/0 | Jan
%)

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

9

7/

7/

6

6

6

6

6

6

/

9

10

be = b, — s = 0.944,_(1-0.65C?)

C = fractional cloud cover




Depth-variation of solar radiation

# Measured with
Secchi disk or /n-situ
pyranometer

07 = (1_ B)(I)sne_nz




Atmospheric Radiation

#Long wave length (> 3um)
#Re-radiated from atmosphere
#Measured by pyrgeometer

#Incident clear sky radiation calculated from
absolute air temperature, vapor pressure

#Corrections for cloud cover and reflection




Incident Radiation Formulae

N

é.. =eo(T, +273)*

o = Stefan-Boltzman const (5.7x10-8 W/m2-°K4)

¢ = emissivity (dimensionless)

e=0.92x10" (T, + 273)°  Swinbank (1963)

= {1.0-0.26/ exp[7.77x10°5(T,)?]}  ts0-Jackson
e =L xp) T opos

- Ve
E = 12 =
A{(T N 273)j € = vapor pressure, mbar
Brutsaert (1975

a




Net Atmospheric radiation

b, = 0.97c0 (T, +273)*(1.0+ 0.17C?)

C = fractional cloud cover

~39% reflection




Back Radiation

#Water surface is nearly a black body
O (8 it 097)

é,. =0.970 (T, + 273)* =5.5x10%(T. + 273)*
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Evaporative Heat Flux

# Measured
m eddy flux (short term)
= evaporation pans (long term)

# Computed from mass transfer formulae
E=pf(W,) (e,e,) Dalton’s Law
e, = vapor pressure at surface

e, = vapor pressure at elevation z
f(W,) = wind speed function = a + bW, (k)




N

Evaporative Heat Flux (cont'd)

#Mass transfer => heat transfer using
latent heat of vaporization

L, = (2493.— 2.26T)x103 1/Kg

¢e = LVE = f (sz)(es ] ea)

- “Lake Hefner”, Marciano
P =3.1AV,(8—€) 14 Harbeck (1954)

(W/m?; W, in m/s; e, e, in mb)

il ~0.05 _ “Fetch-dependence”
fe =51A W, (& - &) Harbeck, (1962)

(A in ha)
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» N
» N

e, and W, vary vertically (height above water) and
horizontally (above water or on-shore)




Evaporation from non-natural
water bodies

N

# e increases with :
temperature e

= Heated water bodies have
increased evaporation
(water vapor also lighter
than air)

@ e_ decreases with salinity
» Saline bodies have &

decreased evaporation
# e_ decreases with pressure ¢, = f(W,) (es-e,)



Conductive Heat Flux

# Computed from evaporative flux using
Bowen Ratio

9. = Ro,

(Ts _Tz)
b (es o ez)

R, =C

C, =0.61 mb/°C;
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Summary

On=0sn +dan —Opr —Pe —d¢
N J

~
functions of T,

Nt o
Y

functions of external factors (met
and astronomical conditions)

Strategies for computation: table look up

Self regulation: errors in calculations compensate
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¢ Equilibrium Temp, T,

s T, forwhich¢, =0

= Function of met

# Surface Heat Exchange
Coefficient, K

= Slope of ¢, vs T,

On = 'K(Ts_Te)

K ~ 20-50 W/m?°C

Linear Heat Transfer

Slope K




Example: Periodic Heat Loss

dT __
pCV ot T As¢n
n
%—I - k(T-T,) k=Kpch A

T, :'ITe + AT e"™ o = 2x/P | V/A,

T=T+AT*e"

T =T, +ATe’e"



Periodic Heat Loss (cont'd)

N

T=T+AT*e“ AT* = ATe"

T =T, +ATe’e"

T =T, + ATt t, =(0/27)P
AT* kK e e o
T . I = —Q)
AT, k+iw \\/kz +w2/ Phage Jaig :
N t, = —tan"(w/k)

Amplitude 2




Temperature

20

Periodic Temperature Response

8 10 12 14 16 18 20
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Examples

K/pc = 1m/d*; h = 10m, k=K/pch = 0.1d

P 1 day 365
w=27/P 0.17d-1 6.28d1
AT/AT, 0.016 0.986

=k/(k2+»2)0-5

0=tan1(-w/k) -890 -109
t= 0.247 d 10 d

P/2rtan1(w/k)

* K ~ 48 W/m?2eC



Cooling Lakes and Ponds

#Used to cool electric power plants

#Shallow (vertically well-mixed)
» Erected with dikes
n [ = T(X,Y) + T(t)
#Deep reservoirs
» Damming of reservoirs
#Cooling capacity
o r=KAp/PCQo




Cooling Ponds

N

Deep
Stratified

Shallow -
Dispersive
Shallow -
Recirculating

«
—
|

Plan View Elevation




Example: shallow-longitudinal
|

dispersive
%
dT d°T
0oy I = ponrie, 4T k(T Te W
dx?
Single pass
T-Te sae’ L
To—Te (1+a)2ea/2E'- ~(1-a)%e T

Continuous operation

2

(T, =T, + AT,)
2
T, -Tg 4ae]/ AL
* —a/2E * 2E *
ATo (1+a)%e *r ~(1-a)’e L _gae L

Figure by MIT OCW.

Jirka et al. (1978)
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Stratification in Lakes & Reservoirs

L

#Factors causing vertical stratification
» Differential absorbtion
= Reduced vertical mixing

#Factors causing horizontal stratification
= Strong through flow

= Strong wind
a Differential absorbtion




Reservoir classification based on
horizontal through flow

N

: (Orlob, 1969)

# Through flow velocity = L/(V/Q)
#Int'l wave speed ~ (gAp/ph)?> ~ Nh

= N = buoyancy freq = [(g/p)(dp/dz)]°->

s L = length; Q = flow; h = depth; V = vol
#F = LQ/VNh

s F. << 1 vertically stratified

s F. >> 1 vertically mixed




1-D Reservoir Modeling

Z
4

h
qout

| Az

qin

Q
07 o qin qout

R D = g A e
ot Aoz A 0z 0Z A
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Surface Layer

# Well mixed layer
= Convective mixing
= Wind mixing

# Wind mixing algorithm
for surface
= Oceans (Kraus-Turner)

# 1-D model below




Surface Layer (cont'd)

N

ARE _ u2uat ~ pulat

Many variants

u At

A




Lake stability

N
\J

Stability index (PE of water body with equivalent mass
and heat content but uniform density — PE of stratified

body)

h
3 =|12=plRllz-zl0Me
(2) A(z)dz / j A(z)dz Average density

al
]

p(2) A(2) zdz / j p(2)A(z)dz Center of mass
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