3 Spatial Averaging

N
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#3-D equations of motion
#Scaling => simplifications
#Spatial averaging

#Shear dispersion

#Magnitudes/time scales of
diffusion/dispersion

#Examples




Navier-Stokes EQns

Conservative form momentum egn; x-component only

2 2 2
My 0wy s L+ L uw) - =T P, (08, 01, O
ot o oy 0 OX ox® oy° o0z
1 2 3 4 5

1 “ storage” or local acceleration

2 advective acceleration

3 Coriolis acceleration [f = Coriolis param = 2wsin(0), 6 = latitude]
4 pressure gradient

5 viscous stress




Turbulent Reynolds Egns

U=U+U",etc (U =timeaverage) Insert & time average (over bar)
O r/_ N — \ 0_, 07
—|(U+Uu)u+u')|=—u-+—u e.g., Xx-component; term 2
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Continuity
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Specific terms

_Term 2a: could subtract U times continuity egn

_{aa oV aw}
=U +—

oX oy o0z
_ou _ou __.ou
J—+V—+w— _ NC form of momentum eqgn (term 2)
OX OX OX

Terms 5 + ZV X-comp of turbulent shear stress
Ug—u—P:z'xx =~ U= ngﬁ—u

OX OX Exxr Exyr Exz AI€

o0 — i 0. o turbulent (eddy)
Ua_y_u V=7,=2-UV= xy(ay + axj Kinematic viscosities

- e resulting from
oM _TwWer ~—Uw= gxz(a“ N a""j closure model (like
Exx’ Exy’ Exz)




Specific terms, cont’d

Similar egns for y and z except z has gravity.

For nearly horizontal flow (w ~ 0), z-mom ==> hydrostatic

p 0z z=n(X.y,t)
7
p= pa+jpgdz .« Z

Use in x and y eqns



Specific terms, cont’d

T Term 4
n
P = g pa+_[pgdz
OX OX i Z
z=n(x,y,t) 1
ap 8
a +|+qdz "1
OX 6 psg J. ¢/ K
4a vile 4c . 7

4a atmospheric pressure gradient (often negligible)
4b barotropic pressure gradient (barotropic => p = p, = const)

4c¢ baroclinic pressure gradient (baroclinic => density gradients;
often negligible)



Simplification

_ Neglect g,; &,, = &n; €, = &,

T Neglect all pressure terms except barotropic
And drop over bars

a—u+£(u2)+i(uv)+£(uw)—fv:—ga—n+i gha_u +£(528—uj
ot _oX oV _ 0z __ oX oYy oy ) 0z 0z
1 2a 3  4b 2b1 2b2
Contrast with mass transport egn
@+i(uc)+i(vc)+g(wc) ot EX@ Fi2 Ey@ +£(Ezﬁji2r
ot oXx oy 0z OX oy) oy oy) 0z 0z
1 2a 2b1 2b2 7

Pressure gradient (4) in momentum egn == viscosity (2b) not always
Important to balance advection (2a); depends on shear (separation). For
mass transport, diffusivity (2b) always needed to balance advection (2a)



Ccomments

N

# 3D models include continuity + three
components of momentum eq (z may be
hydrostatic approx) + n mass transport egns

# Above are primitive egs (u, v, w); sometimes
different form, but physics should be same

# Sometimes further simplifications
# Spatial averaging => reduced dimensions
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Further possible simplifications

Neglect terms 2a and 2bl

ou o g on , 0 (82 @j Linear shallow
ot OX 0z 07 water wave eqgn
Also neglect term 1
— fv=—g on n 0 e ou Steady Ekman flow
oX 0z\ “ oz
Also neglect term 2b2
e _ga_n Geostrophic flow

OX




Z-vertical

Spatial averaging | y-lateral

3-D equations

f‘\

d(x,y,z,t) ocean

/ \ X-longitudinal

2:D vertical average 2-D lateral average
d(x,y,t) shallow coastal, d(x,z,t) long reservoir; deep
estuary \ / estuary/fjord
1-D vertical & lateral 1-D horlzontal average
dverage 0(z, t) deep lake/reservoir
o(X, 1) river; narrow/shallow ocean

estuary



Ccomments

N

# Models of reduced dimension achieved by
spatial averaging or direct formulation
(advantages of both)

# Demonstration of vertical averaging
(integrate over depth then divide by depth,
leading to 2D depth-averaged models)

# Discussion of cross-sectional averaging (river
models)




Vertical Integration => 2D

N

(depth-averaged) eqgns

4 Z

H(X,y,1t) nx,y,t

N I

> Yy
Ih(x,y%

u(x,y,zt)=u(xy,t)+u"(xYy,zt)
u(x,y,zt)=U, (X, y,t) + U (X, ¥,z,t)  (notes use)
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Vertical Integration, cont'd

\V4

/

I\cu

u"

N+

%

L n
u(x,y,t)= % ju(x, Yy, z,t)dz
~h

In analogy with Reynolds averaging, decompose velocities and

concentrations into U+U", C+C" , etc. and spatially average




Depth-averaged eqgns

N
\J

Continuity
677 0

H)+—(VH)=0
P (u )+8y(v)

\ oW ou ov

from — + kinematic surface bc of —,—
0z OX oy

Mass and Momentum straight forward except for NL terms

]Zh%(uZ)dz:%j(ﬁ+u“Xﬁ+u")jZ:§Jﬁzdz+%I/%é,dpr%junzdz
=3(62H)+3(FHJ
OX OX
—

momentum dispersion
n

jh (uc)dz = (u cH )+§ U cH )
ﬁ—l

mass dispersion
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X-momentum

9(@H)+ L @H)+ 2 (@H)- fH = —gH 27
ot OX oy OX
+i HgLa—u 9 HgTa—V T o
OX OX oy OX o P

%—1 a—’
Due, M wtn | ZHe, M GvH
x|t ox oyl Yoy
| \
Depth-ave Long. dispersion

long. diff

Depth-averaged egns, cont’d




Depth integrated egns, cont'd

N
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Mass Transport

2@)&(@)%(@);

ot OX
L Olpe |, Oy | g O g Cc
OX OX oy oy “oz|, ‘oz,
0 [HE @—ﬁH] 0 [HE @—\/—H}
OX X oy oy
| \
Depth-ave Long dispersion

long. diff




Ccomments

N

#®¢, e, E_ , E; are longitudinal and transverse
momentum and mass shear
viscosity/dispersion coefficients.

#¢ >>c¢grand E, >> E;, but relative
Importance depends on longitudinal gradients

#® Dispersion process represented as Fickian
(explained shortly)




Boundary Conditions: momentum

N
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T _ C \/U IRVETY Surface shear stress due to wind
P, R w =w  (components U, and V,); external input
(unless coupled air-water model)

Assumes U, >> u,; C, = drag

coefficient ~ 103 (more in Ch 8)

T _ C, \/ﬁz L2 Bottom shear stress caused by flow
(computed by model)

Different models for C; (Darcy-
Weisbach f; Manning n; Chezy C),

f

eg. 7, =— Tk

112
<




Boundary Conditions: mass transport

N
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e,
0Z

Surface mass transfer
(air-water exchange)

S

o g o
0Z|, 0z

No flux Source Sink
(dye, salt) (DO) (VOO)
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Boundary Conditions: mass transport

Benthic mass transfer

oC
_E = )
*oz,  (sediment-water exchange)
Z
A A ] A ]
]
A /
C
\ 7/ i N
\
oC
-— =0 —@ >0 _@ <0
az b V4 b 82 b
No flux Source (pore Sink (trace metals bound
(dye, salt) water diffusion) by anoxic sediments)




Magnitude of terms: E,

B, ~uk~uH
u, = shear velocity = /7, / p = %ﬁ, f =0.02=>u, =0.050
™ 7
N
el A U

F.=AAxpSy = F, =1, pAX= pu.’ pAX Normal flow; gravity
balances friction

u? =29 =R,Sy; u. =./gHS;

R, =A/p = hydraulicradius= H




E, cont'd

N

E =0.07u.H

L

Seen previously; from analogy of mass
and momentum conservation (Reynolds’
analogy) and log profile for velocity

0.5H 0.5H® 7H

l

N
|12

7THT

X,
m u*

ur,,=———,

5 2
™ 1E T 007u.H  u

if U=20u. x,,=150H




N

ET
u.H

~(0.08-0.24
(say 0.15)

ET
u.H

~(0.2-4.6
(say 0.6)

0.5B* 0.5B*
" E.  0.6uH
~ 05B% =
~ 0.6u.H
1787
H

112

2

Xim

u: if U=20u,

Transverse mixing: E;

Laboratory rectangular channels

Real channels (irregularities,
braiding, secondary circulation)

B = channel width
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Example

B=100m,H=5m,u=1m/s

X, = 150H = 750 m

X, = 17B2/H = (17)(100)2/5 = 34,000 m
(34 km)

It may take quite a while before concentrations can be
considered laterally (transversally) uniform
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Simplifications

Steady state; depth-averaged; no lateral advection or long dispersion;

no boundary fluxes
__ HE —
ot 8x )/}g 8XV 7/(;2%2

Hu —=—| HE; —
ax 6y 6y
Uniform channel
— 5 Simple diffusion equation: solutions for
oc E; o°c . g
=—— continuous source at x=y=0
ox u oy y1
-
const

AR
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qq - dimensionless cumulative

cBuH

3

discharge

cq - dimensionless concentration
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X4 - dimensionless longitudinal distance

xE
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Holly and Jirka
(1986)

Figure by MIT OCW.



A useful extension: cumulative
discharge approach (votsukura & Sayre, 1976)

N

Use cumulative discharge (Q.) instead of y as lateral variable

Q. = [H(Y)T(y)dy

ocC _ 0 H %TE. oc
OX an H_l an
D

D behaves mathematically like

diffusion coefficient, but has different

dimensions; can be approximated as

constant (cross-sectional average):

5 :i(ij GE.dO. == ac 5 8252 Can use previous
QY OX 0Q. analysis
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Longitudinal Shear Dispersion

Why is longitudinal dispersion Fickian?

Original analysis by Taylor (1953, 1954) for flow in
pipes; following for 2D flow after Elder (1959)

Z

<l
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Longitudinal Shear dispersion

Why is longitudinal dispersion Fickian?

Original analysis by Taylor (1953, 1954) for flow in
pipes; following for 2D flow after Elder (1959)

Ol|
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Shear dispersion, cont’d

L2
w22 %), 2 e
ot OX OX ox) oy oy
u=Uo+U"; c=C+cC"; x=¢+0t; t=r
oc oc' ,0c ,oc" 0O oc 0 oc'| 0
—+—+U'—+U = E,—|+—| E,— |+—
or Ot o¢ o 0o¢ o¢ ) of o ) 0z
1 2 3 4 5 6

Z
A — U” -
H RU
\ 4 t >
t0 t1 t2

0

4

_|_
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Shear dispersion, cont’d

N
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Z
A — U” o
H U
\ 4 t >
t, t, t

L2
a)L>H => longitudina dispersion<< vertical 5,6<<7
b)T>>c' => 0c"/o¢ <<éC/os 4 << 3
c)x>>L => 0/dr<<u"d/o¢ 1,2<<3

ny %(Z ? 22/ 2|5 ) el s al= %)

5 6



Shear dispersion, cont’d

N

fi
A 4 t o
t0 t1 t2
- " ‘ L2
u" ac == 0 E G_C Differential advection balanced by
o 0z\ ° oz transverse diffusion
3 7 -
11 UL 86
We want —U C  and to show that it is ~ EL &

Integrate over z twice to get ¢”; multiply by u”; integrate again and divide
by H (depth average); add minus sign



Shear dispersion, cont’d

il" c'= —% I u'c'dz= I}I §_§ Zui E%E u" dzdzdz

E, 1!

2
EL — | ) H_ y"'? |, = dimensionless triple integration ~ 0.07
E u'~u; E,~uH

z

E, = 5.9u.H Elder (1959) using log profile for u”(z)

E, = 10u.r, Taylor (1954) turbulent pipe flow (r,= radius)

Use E, to compute o, or use measured o, to deduce E,




Ccomments

N
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#E  involves differential advection (u”)
with transverse mixing in direction of
advection gradient (E,)

#E, —~ 1/E,; perhaps counter-intuitive, but
Iook at time scales:

£ H 2 u_ Recall Taylor’s D ~ ?T R(r)dz
. E Theorem

TC U02
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A thought experiment

Consider the trip on the Mass Turnpike from Boston to
the NY border (=150 miles).

Assume two lanes Iin each direction, and that cars in
left lane always travel 65 mph, while those in the right
lane travel 55 mph.

At the start 50 cars in each lane have their tops
painted red and a helicopter observes the “dispersion”
In their position as they travel to NY

1) How does this dispersion depend on the frequency
of lane changes?

2) Would dispersion increase or decrease if there were
a third (middle) lane where cars traveled at 60 mph?
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Thought experiment, cont’'d

L

H2 11
EL ~E(U )2
E

y4

What are the analogs of H, E, and u”




Thought experiment, cont’'d

N

L

H?—
E, ~E_Z(U )2

H ~ number of lanes
E, ~ frequency of lane changing

u” ~ difference between average and lane-specific speed

1) Decreasing E, increases dispersion (as long as there is some E))

2) Increasing lanes increases H, decreases mean square u”,

(U2 = (65-60)° ;(55—60)2 _50/2 (2 lanes)
7 - (65-60)° +(6O—360)2 +(55-60)" _ /5 (3 lanes)

If E, is constant, net effect is increase in E; by (3/2)?(2/3) = 50%




1D (river) dispersion
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u=U+U": c=C+cC"

— ljch Insert into GE and spatial average

Continuity

a;A‘Jr_(,a\u) q. q, = lateral inflow/length [L%/T]

Mass Conservation (conservative form)

0| .=—aocC —
—(AC +— Auc) =—| AE, — - Au"c" |+ Ar, +
0t( ) (Auc) ax[\ T J q.C.

ac " . : .
AE, Lo Longitudinal dispersion again
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1D (river) dispersion, cont'd

NC form from conservative equation minus c times continuity

9, 0 o| .=—ocC —
—(ACc)+—(Auc)=—| AE.——-AU'C" |+ Ar. +Q, C
~ (AQ)+— (Auc) ax{ > } A

oA 0O
— Cc{—+—(Au) =
{8t +8x( u) qL}
Mass Conservation (NC form)
Ly BB AEL@ +r, +q—L(CL—C)
ot ox AoOX OX A

Note: if ¢, > c, c increases;
If ¢, < c, ¢ decreases (dilution)




E, for rivers

N

L

Elder formula accounts for vertical shear (OK for depth averaged
models that resolve lateral shear); here we need to parameterize
lateral and vertical shear. Analysis by Fischer (1967)

i B2 = (C B = river width
_unCu:Ib_ ||2_ . . -
E. OX E; = transverse dispersion coefficient
\ J
g I, — ND triple integration (across A) — 0.07
L

Same form as Elder, but now time scale is B%/E-, rather than H?/E,.
E; > E,, but B2 >> H? => this E, is generally much larger
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E, for rivers, cont'd

L

Using approximations for u”, E;, etc.

=2p2
E = 0.012 B Fischer (1967); useful for reasonably
u. H straight, uniform rivers and channels
or
—\2 2
E'— ~ 0.0 i (Ej
uH (u ) \H
if U= 20u,
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Magnitude of terms, revisited

Vertical Diffusion

Transverse Diffusion in Channels

Longitudinal Dispersion (depth-averaged flow)

Longitudinal Dispersion (turbulent pipe flow)

2
] Longitudinal Dispersion (rivers)




Previous Example, revisited

B=100m,H=5m, u=1m/s, u. = 0.05u =0.05

_ 0.0W”B® _ (0.0)(1)(100)°

E, = 400 m°/s
u. H (0.05)(5)
Eo'x2 =2E, => Gaussian Distribution; but only
dt after cross-sectional mixing
X = 0.5B* J
m ET . Xim

X = 34 km if point source on
river bank; '/_/_/u:> IB




Previous Example, revisited

B=100m,H=5m, u=1m/s, u. = 0.05u =0.05
_ 0.0w*B* _ (0.01)(1)*(200)

E, = 400 m°/s
u. H (0.05)(5)
Eo'x2 =2E, => Gaussian Distribution; but only
dt after cross-sectional mixing
B 0.5B° J
Xtm _ ET Xtm

4 times less if point source in —
mid-stream f [ T e -




Previous Example, revisited

B=100m,H=5m, u=1m/s, u. = 0.05u =0.05
_ 0.0w*B* _ (0.01)(1)*(200)

E, = 400 m°/s
u. H (0.05)(5)
Eo'x2 =2E, => Gaussian Distribution; but only
dt after cross-sectional mixing
X = 0.5B* J
m ET . Xim

Less still if distributed across =7 _a--=- i ’u —
channel (but not zero) 77
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Storage zones

Real channels often have backwater (storage) zones that
Increase dispersion and give long tails to c(t) distribution

c(x,t)
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Storage zones, cont'd

BERCLTMIN R N (AE 6x) Ck(c ~¢)+a(c,—C) Main channel

ot (’3x AdX
2) dc, E —ai(cs _ C) Storage zone
dt A

A(X) = cross-sectional area of main channel
A, = cross-sectional area of storage zone
= storage zone coefficient (rate, t?; like q,/A)
If you multiply 1) by A and 2) by A, the exchange
terms are aA(c-c) and —aA(c,-C)

Really the same process as longitudinal dispersion, but instead of
cars in either fast or slow lane, some are in the rest stop.
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