
3 Spatial Averaging

3-D equations of motion
Scaling => simplifications
Spatial averaging
Shear dispersion
Magnitudes/time scales of 
diffusion/dispersion
Examples



Navier-Stokes Eqns
Conservative form momentum eqn; x-component only
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1  “ storage” or local acceleration

2  advective acceleration

3  Coriolis acceleration   [f = Coriolis param = 2ωsin(θ), θ = latitude]

4  pressure gradient

5  viscous stress



Turbulent Reynolds Eqns
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Continuity

e.g., x-component; term 2

x-momentum
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Specific terms
Term 2a: could subtract      times continuity eqnu
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x-comp of turbulent shear stress

εxx, εxy, εxz are 
turbulent (eddy) 
kinematic viscosities 
resulting from 
closure model (like 
Exx, Exy, Exz)



Specific terms, cont’d
Similar eqns for y and z except z has gravity.

For nearly horizontal flow (w ~ 0), z-mom => hydrostatic
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Specific terms, cont’d

Term 4
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4a  atmospheric pressure gradient (often negligible) 

4b  barotropic pressure gradient (barotropic => ρ = ρs = const)

4c  baroclinic pressure gradient (baroclinic => density gradients; 
often negligible)



Simplification
Neglect εxx; εxy = εh; εzx = εz

Neglect all pressure terms except barotropic
And drop over bars
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Contrast with mass transport eqn
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Pressure gradient (4) in momentum eqn => viscosity (2b) not always 
important to balance advection (2a); depends on shear (separation).  For 
mass transport, diffusivity (2b) always needed to balance advection (2a)



Comments
3D models include continuity + three 
components of momentum eq (z may be 
hydrostatic approx) + n mass transport eqns
Above are primitive eqs (u, v, w); sometimes 
different form, but physics should be same
Sometimes further simplifications
Spatial averaging => reduced dimensions



Further possible simplifications

Neglect terms 2a and 2b1
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z-vertical

Spatial averaging y-lateral

3-D equations

φ(x,y,z,t) ocean
x-longitudinal

2-D lateral average

φ(x,z,t) long reservoir; deep 
estuary/fjord

2-D vertical average
φ(x,y,t) shallow coastal; 

estuary

1-D vertical & lateral 
average

φ(x, t) river; narrow/shallow 
estuary

1-D horizontal average
φ(z, t) deep lake/reservoir 

ocean



Comments

Models of reduced dimension achieved by 
spatial averaging or direct formulation 
(advantages of both)
Demonstration of vertical averaging 
(integrate over depth then divide by depth, 
leading to 2D depth-averaged models)
Discussion of cross-sectional averaging (river 
models)  



Vertical Integration => 2D 
(depth-averaged) eqns
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Vertical Integration, cont’d
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Depth-averaged eqns
Continuity
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Depth-averaged eqns, cont’d
x-momentum
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Depth integrated eqns, cont’d
Mass Transport
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Comments

εL, εT, EL , ET are longitudinal and transverse 
momentum and mass shear 
viscosity/dispersion coefficients.

εL >> εT and EL >> ET , but relative 
importance depends on longitudinal gradients

Dispersion process represented as Fickian
(explained shortly)



Boundary Conditions: momentum
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(unless coupled air-water model)
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Boundary Conditions: mass transport
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Boundary Conditions: mass transport
Benthic mass transfer 

(sediment-water exchange)b
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Magnitude of terms: Ez
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Ez cont’d
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Transverse mixing: ET
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Example
B = 100 m, H = 5m, u = 1 m/s

Xvm = 150H = 750 m

xtm = 17B2/H = (17)(100)2/5 = 34,000 m 
(34 km)

It may take quite a while before concentrations can be 
considered laterally (transversally) uniform



Simplifications
Steady state; depth-averaged; no lateral advection or long dispersion; 
no boundary fluxes
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Holly and Jirka 
(1986)
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A useful extension: cumulative 
discharge approach (Yotsukura & Sayre, 1976)

Use cumulative discharge (Qc) instead of y as lateral variable
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Longitudinal Shear Dispersion
Why is longitudinal dispersion Fickian?

Original analysis by Taylor (1953, 1954) for flow in 
pipes; following for 2D flow after Elder (1959)
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Longitudinal Shear dispersion
Why is longitudinal dispersion Fickian?

Original analysis by Taylor (1953, 1954) for flow in 
pipes; following for 2D flow after Elder (1959)
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Shear dispersion, cont’d
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Shear dispersion, cont’d
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Shear dispersion, cont’d
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Shear dispersion, cont’d
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Comments

EL involves differential advection (u”) 
with transverse mixing in direction of 
advection gradient (Ez)
EL ~ 1/Ez; perhaps counter-intuitive, but 
look at time scales:
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A thought experiment
Consider the trip on the Mass Turnpike from Boston to 
the NY border (~150 miles).

Assume two lanes in each direction, and that cars in 
left lane always travel 65 mph, while those in the right 
lane travel 55 mph.

At the start 50 cars in each lane have their tops 
painted red and a helicopter observes the “dispersion”
in their position as they travel to NY

1) How does this dispersion depend on the frequency 
of lane changes?

2) Would dispersion increase or decrease if there were 
a third (middle) lane where cars traveled at 60 mph?



Thought experiment, cont’d
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Thought experiment, cont’d
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Ez ~ frequency of lane changing
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2) Increasing lanes increases H, decreases mean square u”, 
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1D (river) dispersion
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1D (river) dispersion, cont’d

NC form from conservative equation minus c times continuity
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EL for rivers
Elder formula accounts for vertical shear (OK for depth averaged
models that resolve lateral shear); here we need to parameterize
lateral and vertical shear.  Analysis by Fischer (1967)

B = river width

ET = transverse dispersion coefficient

Ib – ND triple integration (across A) ~ 0.07 

x
cu

E
BIcu

T
b ∂

∂
=− 2

2

"""

EL

Same form as Elder, but now time scale is B2/ET, rather than H2/Ez.  
ET > Ez, but B2 >> H2 => this EL is generally much larger



EL for rivers, cont’d
Using approximations for u”, ET, etc.
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Magnitude of terms, revisited
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Transverse Diffusion in Channels

Longitudinal Dispersion (depth-averaged flow)

Longitudinal Dispersion (turbulent pipe flow)

Longitudinal Dispersion (rivers)



Previous Example, revisited

B = 100 m, H = 5m, u = 1 m/s, u* = 0.05u =0.05

/sm400
)5)(05.0(

)100()1)(01.0(01.0 2
22

*

22

===
Hu

BuEL

Lx E
dt
d 22 =σ => Gaussian Distribution; but only 

after cross-sectional mixing

u
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25.0
= xtm

xtm = 34 km if point source on 
river bank; u B



Previous Example, revisited

B = 100 m, H = 5m, u = 1 m/s, u* = 0.05u =0.05

/sm400
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Lx E
dt
d 22 =σ => Gaussian Distribution; but only 

after cross-sectional mixing
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E
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tm

25.0
= xtm

4 times less if point source in 
mid-stream u B



Previous Example, revisited

B = 100 m, H = 5m, u = 1 m/s, u* = 0.05u =0.05

/sm400
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)100()1)(01.0(01.0 2
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22

===
Hu

BuEL

Lx E
dt
d 22 =σ => Gaussian Distribution; but only 

after cross-sectional mixing

u
E

Bx
T

tm

25.0
= xtm

uLess still if distributed across 
channel (but not zero) B



Storage zones
Real channels often have backwater (storage) zones that 
increase dispersion and give long tails to c(t) distribution 
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Storage zones, cont’d
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Main channel

Storage zone

A(x) = cross-sectional area of main channel

As = cross-sectional area of storage zone

α = storage zone coefficient (rate, t-1; like qL/A)

If you multiply 1) by A and 2) by As, the exchange 
terms are αA(cs-c) and –αA(cs-c)

Really the same process as longitudinal dispersion, but instead of 
cars in either fast or slow lane, some are in the rest stop.
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