2 Turbulent Diffusion
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#® Turbulence
# Turbulent (eddy) diffusivities

#Simple solutions for instantaneous and
continuous sources in 1-, 2-, 3-D.

#Boundary Conditions

#Fluid Shear

#Field Data on Horizontal & Vertical Diffusion
#Atmospheric, Surface water & GW plumes




Turbulence

N

#Turbulent flow (unstable, chaotic) vs
laminar flow (stable)

#®Turbulent sources: internal (grid, wake),
boundary shear, wind shear, convection

# Turbulent mixing caused by water
movement, not molecular diffusion

# Two-way exchange--contrast with initial
miXing (one-way process)




Initial mixing




Kinetic Energy Spectrum

N

S, = kinetic energy density

implied ga
P 9ap Sk~82/3k'5/3

l /\ / could also use frequency

k = 2n/A = wave humber

oriL  27lp
mean flow turbulence

S, = kinetic energy/mass-wave number [U%/L1 = L3/T7]
L = size of largest eddy
¢ = energy dissipation rate [U2/T = U2/(L/U) = U3/L = L2/T3]

n = Kolmogorov (inner) scale = (v3/¢)1/4 [L]




Turbulent Averaging

f‘\

@+V
ot

(Gc)=DV*c

/ c(t)

Conservative mass transport eq.

Both g and c fluctuate on scales
smaller than environmental interest

Therefore average. Two choices: time
average, ensemble average;
equivalent if ergotic.

C Time average

<C> Ensemble average

c'(t) =c(t) -
q'(t) =q(t) -

C

q

. t c'(t) =c(t)-(c)
g'(t) =q(t)-(a)




Turbulent Averaging, cont'd

F‘\

|
_I_
9

(Gc)= DV?c |
ot Expand g and c; time average

V-(dc)= -_(a+q'XC+c')]

Va Va

e %C Rva (CTC') Continuity

O |
I

oC = )

E+q Y==Y. (q C)+ RVic Closure problem: we
—\ 90— 0 — 0 —— onlywantC butwe

V-(qc =—UC+_—VC+_—WC  myst deal with ¢’

OX oy 0z

w'c' Eddy correlation.
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Turbulent Diffusion

Inst. flux (m/L2-T)

z J,=wc¢
\ =W (C+C')
(2)— Mean flux (m/L2-T1)
C L=l -c)
7 L | |
L oc
‘ w’ C,=C+—L
(1H— N 0z
| | jZ :_‘W‘La_c
| | > C | |8Z
C C+cC E

Y4

Eddy (or turbulent) diffusivity
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u'lL

Eddy Diffusivity E-

# Structurally similar to molecular diffusivity D, but
much larger (due to fluid motion, not molecular
motion) => often drop D

# E is a tensor (9 components, E,,, E,,, etc.) but often

treated as a vector (E,, E,, E,)

4 Depends on nature of turbulence; in general neither
isotropic nor uniform

# Eddy diffusivity ~ conductivity ~ viscosity

# Individual plumes not always Gaussian; but ensemble
averages -> Gaussian
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Turbulent transport egn

@+6-VC=V(EVC)+Zr

ot

oc —oC -o0C —oC Cartesian coordinates;
—+U—+V—+W— _ _ o
ot ox oy 0z diagnolized diffusivity

=£(EX8—CJ+i Eyﬁ—C +Q(E26—Cj+2r
OX oX ) oYy oy ) 0z 0z
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How to measure eddy diffusivity

# Measure U’, c¢’, etc. and correlate

# Measure something else (e.g. dissipation)
that correlates with E

# Measure concentration distribution and
calibrate E (more later)

@ Model it

1092.Ip SS9




Models of turbulent diffusion

N

12 12 2
U~k k=TKE=" VW
N\ 2 2

turbulent kinetic energy (don't confuse
with wave number)

1) AL model (two egn model)

E ~ kL

ok ,
E:---isources& sinks of Kk
Z_It':...isourc&s& sinksof L

2) kmodel (one egn; solve only for k; L is hardwired)




Models of turbulent diffusion,

cont’d

N

u|2 V|2 VVIZ
U~+vk k=TKE=—+—+
Df- Pt D

turbulent kinetic energy

3) k-t model (two egn model)

¢ = turbulent dissipation rate: a_k:”__g

ot
e~ kIt ; t = time scale of turb. ~ L/k1/2

e~ k32[LorL~ k3¢
E~JkL~k?/¢
o€

E:---isources& sinksof ¢
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A gazillion analytical solutions

#Instantaneous Point Source (Sec 2.2)
#Instantaneous Line Source (Sect 2.3)

#Instantaneous Plane Source (Sect 2.4)
#Continuous Point Source (Sect 2.5)
#Continuous Line Source (Sect 2.6)
#Continuous Plane Source (Sect 2.7)

Simple ones, e.g., u = const, given in following




Instantaneous (point) source in 3D

\V
L 7/

M
_’t\=OO = - P T

oc A oc o°c o°c o°c

CuC e E S E Y ke
o0 ox Tox* Yoy* ‘oz

M (x—ut)> y* 7
C= 5 > EXpP— + + + kt
8(nt)”*(EE,E,) 4Et AEt 4Ep

Xy =z

)2 2 2
id exp—{(x ut) + Y + x 2+kt}

- 3/2 2 2
(27)" ‘0,00, 20, 20, 20,
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Instantaneous (line) source in 2D

\

/

(e.g. extending over epilimnion)

M/
N\

—

t=0

{ (or m’)

&

oC oC
ot OX

M/h

0°c

OX

4= 4t )(E,E,)"?

@@—{
y

M /h

B (2r)o,0

p{

T
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Instantaneous (plane) source in 1D

A C

N

M/A att=0 (or
2

o, 0 _g %

8t OX * OX?

C=

2t )/2E, Y2 eXp—{ AE t

M
T (27Z_)1/2 o eXp_

mll)

ke




Continuous (point) source in 3D

d

p ; c(y,z) T»
m (or q)
2 2 2
W g PCE TC g I
OX X oy 0z

C= in T EXP— +
Anx(E.E)) 4E x 4Ex U

. 2 2
C= ALl exp—{ yu + ks +k5}

2 2
20, 20, u

2 2
yu o zu +kx}
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Continuous (line) source in 2D
(e.g. extending over epilimnion)

|

; c(y) —
7 % X
m/h (orq)
2
u@= E a—(,j—kc
ox oy
. 2 )
C= nh > EXP— y u +k§>
2(7nUE, X) 4E X U

: 2
m/uh exp—{zy u +k§}

C=
(272_)1/26y
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Continuous (plane) source in 1D
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A few comments re solutions

#Spatial integration of point source =>
line source => plane source

#Temporal integration of inst source =>
Continuous source

# Relationship between ¢’s and E’s found
from spatial moments (as before)
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Comments, cont’d

®c~ t1/2 t1 t3/2 for instantaneous 1, 2, 3-D
sources

#®c ~ x0 x1/2 x-1for continuous 1, 2, 3-D
sources (difference: negligible E,)

# Assumes E’s are constant. If not, E’s are
‘apparent’ (more later)

# Most common method to determine E is to fit
to measured concentration distribution
(tracer, drogues)
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Boundary Conditions

I11

Type I: c=const, eg., c=0
on open bndry

Type II: gzconst, eg.:ﬁzo
on on
on solid bndry

Type III  ac+ b% = const,
(mixed):

eg. ucg, = (uc— E, &j
0+

at inlet




Images
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Inst. Pt. Source in Linear Shear

Z
t u(z) /
3 /  Matt=0

./ é P @

u=u,(t)+4,y+4,z A,=0uldy A,=o0uloz

N

t N 2
{x— ! u, (t')ct —Z(Ayy+izz)t} P

M F + + + kt
AE,tL+ () | 4Et  4E

(4nt)??(E,E, E,)" i+ (a7 ]

X —y—z

E
P R Y
120" E, TE

X

c(x,y,zt)= exXp-




Inst. Pt. Source in Linear Shear, cont'd

N

L

E,'=E,[1+4%1°)
smalt, E'>E,  C~ton
larget, E '— E ¢°t°

t2(ou) ou\’
— E + (—j Ez C ~ t5/2
12|loy) 7 \oz

NORONONE)

Longitudinal (Shear) Dispersion

(1) differential longitudinal advection
(2) transverse mixing

E,” is really a dispersion coefficient




Okubo (1970)

A
Y

Figure by MIT OCW.

Cyax/M(m>)

10-°-1

AN T-141

Variation of Peak
Concentration with Time

April — & Release #3

O Release #4
August < O Release #5

/A Release #6

20 50 100 200 500 1000
Time (hrs)




Fluorescent Tracer

N
\J

Digital readout
I

<— Light detector

(_ Wavelengths specific
to the compound

@ Emission filter
o 580 nm
Excitation
Lamp filter <«— Wavelengths created by the
_| compound, plus stray light

(/ Cuvette or
T T - sample cell

Many wavelengths  Specific wavelengths
of light of light

555 nm

Figure by MIT OCW.

# Rhodamine WT
(red dye;
fluoresces orange)

# Injected as
neutrally buoyant
liquid

# Flow thru or /n situ
fluorometer (I ~ ¢)

# Detection ~ 1010
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// P e \
7 s N N
Example a
N
/ .
N

107.7 ppb \ '
\%‘ 100

C' \YJ
O

End

Figure by MIT OCW.
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# Injected as gas d

# Sampled with Nis
(profiles collectec

Figure by MIT OCW.

issolved in water

Kin bottle or equiv
w/ Rosette sampler)

# Analyzed w/ ship
capture

# Detection ~101/

hoard GC w/ electron

Reference —

Vent

Oven

% Detector Recorder

Injection ——_ ’
Sensin
N \QQQQQQQJ |

Carrier Gas Column




North Atlantic Tracer

M

L/

20 km

[

’

| Release Pattern |

TS —

Two Weeks After Release

Release Experiment (NATRE)

# Mass of SF.: 139 kg

# Location: 1200 km W of
Canary Is.

Six Months After Release

@ Depth = 310 m
#Time: 5-13 May, 1992

# References:

= Ledwell et al., Nature,
1993

= Ledwell et al., JGR, 1998

Images: Kim Van Scoy
Figures by MIT OCW.
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NATRE, cont'd

26 N €20 kmy,

Latitude

Longitude

Figure by MIT OCW. Figure by MIT OCW.

Images: Kim Van Scoy
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Drogues (drifters)

L

# Floats w/ large drag
at constant depth

# Have flag or
periodically rise to
surface

# Position viewed from
above or recorded
using GPS
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Horizontal Diffusion

Historically analyzed using vertical line source in
cylindrical coordinates (rather than X, y)

y
; Actual patch X, Yy are relative (to

r center of mass)
X coordinates

Equiv. circular patch

\

Injection




Cylindrical Coordinates, cont'd

N

2, \2 _v2 _ 2 2 2
X+y“ =r° = o, +0, =0,

E,=E,=F Diffusivity assumed horizontally isotropic,
u=v=0 independent of coordinate system
m=M /h vertical line source
j 2zrcr 2dr
2= mz _o _4g 4 (vs 2) because 62 = 26,2
! el If E, is const. (or treated as such)

2
r.2

oo M/he™ “z (M/he® e Gaussian; if E, = const
no,” 4nt L C.. ~ U1 but obs show
Crax ~ T2 0r t3

max




Horizontal

Diffusion
Diagram

(Okubo 1971)

Figure by MIT OCW.

NATRE @

G% (cmz)
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12
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m#S5
e #6
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1011 - ® #a -
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o #c Off
o #d California
e #e
1019 o 4y 41 km
< Banana river
i3 Manokin river
109 - .
© R
o ¥ i
(=]
108 + 100 m
o e
(=]
Houre /o Day Week Month
107 | g 1 || | 1 |
103 104 10° 106 107
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Horizontal Diffusion Summary

L

2 >34  Cgs units; some data from pt
O, = 0.011t source, some from line source
5 (not quite proper but...)
do

E =—" =0.006t"*
Adit

E =0.0850,"
Er — 0.017/+" (=40 arbitrary length

scale of patch




Example

N

100 kg of paint spilled in Mass Bay over a depth of 10m;
how widely will it have spread in one week?

52 = 0.011 t23¢ = 3.7x10! cm2 = 3.7 x 107 m?

o, = 6000 m

Peak concentration?

s M /he—kte—rzlarz k=r=0;h=10m; M = 100 kg; t
2 =86400x7=600,000 s

r

c = 8.6x 108 kg/m3 = 8.6 x 10> mg/L
Gaussian fit; actual peak may be higher




A
UV

Figure by MIT OCW.

o7 (cm?)

1014
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1012_

® Rheno
A 1964V
O 1962 111
0 1962 11
= 19611
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0 #4
m#5
e #6
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Kennedy

North Sea

100 km

10 km

1011 L

108 |-

O New York Bight

® #a

#b

#c Ooff

#d California
#e

#1

e 0 00 ®

< Banana river

i3 Manokin river

Houre /o Day

|e
R/ 1
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<1100 m

Week Month
Ly [ |

107
103

104
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A few more comments

# Three ways to relate tracer spreading:
o(t), E(t), E(o)
# E(c) => scale dependent diffusion.

#® Not truly stationary => ensemble
average not same as individual
realization (absolute vs relative
diffusion; more later)

@& (=40, is arbitrary; others choose
(=350, (=+120




A few more comments, cont’d

2 o
dGr | - Ave slope ~ E,
E= adt Diffusivity Local slope ~ E
2
o Apparent
E i r pp
e 4t diffusivity \ o ~

Richardson’s 4/3 law

E ~ gll 3 54/ 3 4/3 rather than 1.15; theoretical (but not
empirical) basis
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Interpretation of Scale-dependent
horizontal diffusivity & 4/3 law

# Eddy Soup: As patch increases in size it
encounters eddies of increasing size (eddies

smaller than patch spread patch while larger
eddies merely advect it)

#4/3 Law interpreted as shear dispersion:

() >>1

2/3




Interpretation of 4/3 law, cont'd
—#4/3 law in inertial sub-range

S, = kinetic energy density

S, ~e2/3k>/3 Inertial sub-range

il

oniL  27ln

k = wave number

E = diffusivity ~ u'L
¢= dissipation rate ~ dA/dt ~ u?/t ~ u’?/(L/u’) ~ u3/L = const
u’ o~ L3

E~ulL~L%Y3




Summary

Fickian
c2(t) o2~ t
E(t) E~const
E(c) E~const

4/3 Law |Gen’l
c’?~v 3 o2~ i
E~ t2 E ~ tal
E~ o3 |E ~

o(20-2)/q




Absolute vs Relative Diffusion
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Absolute vs Relative Diffusion

J
——————
”’
Y ="
/ — i - —
// —”’
,/ ’/ﬂ /
/7 ==
__, - c 1
\ \
\~ V4
\ - e —
\ R -
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N
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—
o ——




Absolute vs Relative Diffusion

-
¢V
—————
y | .-
7/
/ — e =\
s -
/” /’——
/a” 1 2
. =y G
\ \
\~ »
\ - o
\ R -
\
N
~
~
~
------ —

Absolute diffusion (X?) > Relative
diffusion (c2); ratio decreases with
time




Do the values of E. differ (and if
S0, which is right)?

” A B C
7 small point source line source
drogue of dye of dye

cluster




Do the values of E. differ (and if
S0, which is right)?

A B C
small point source line source
; drogue of dye of dye
cluster

E < E < E

r r r

(drogue) (point) (line)




Okubo

et al. (1983)

N

or (cm?)

10°

107

March 10, 1981

-0~ Dye
—-0o- Drogue

103

104
Time (seconds)

10°

Figure by MIT OCW.




OK, the values of E, differ, but

N

which is right?

Z

All can be right

Key: use the same equation for modeling as calibration

ac e b ac) & ac) Vertical shear & diffusion included
EJFU(Z)& = &(E j+§[Ez a—) explicitly in g.e. => don’t want them
influencing E, => use drogues

oc oc 0 oc e s
—tU,.—=—| Ei— Shear & diffusion excluded from g.e.
ot OX OX OX . : . i
include effects in E, calibration => use
line source of dye

X OX




Diffusivities in numerical models

N

(with finite grid sizes)

E, = aAXAy

|

@
OX

)

oV

oy

o

Smagorinski and Lilly (1963)

ou ov
_|_

OX oYy

o = Smagorinski coefficient (0.1-2.0)

a = 0.16 theoretically; higher empirical
values account for vertical shear

T

1/2




Vertical Diffusion

N

# Fit to large scale property
distributions

= Flux gradient method (lakes &
reservoirs)

= Upwelling diffusion (ocean)

# Measured rate of spread of
tracer second moment

#® Rates of measured dissipation
@ Others

Decreasing
time scale




Flux-gradient method

# Below depth of
other sources/sinks,
; thermal energy
increases only by
turbulent diffusion

# Applicable to
relatively long time

6 y4
e | AT (zt)dz steps (e.g. weeks or
E(zt) = 0 = more)

A( Z) E

z
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North Anna Power Station (WE2-1)

N\

N

\ Meteorological
Tower

g L Lake Anna
\ C
Dike 2

Dike 3

North Anna

Power Station Pond 1

Waste Heat
Treatment

5,000 10,000 FT. o
; : Facility

Elk Creek

Millpond Creek

Figure by MIT OCW.




Temperature and DO profiles

1976
April May June July Aug Sept Oct Aprll May June July Aug Sept Oct

0 \18 @25

June-August average E, =

0.11 m/d (0.013 cm?/s)
p |
“ Temperature Dlssolved Oxygen Pre_operatlonal
Depth (m) (1982 )

April May June July Aug Sept Oct April May June July Aug Sept Oct

0
28 26
0.14 m?/d (0.016 cm?/s)
10
< one unit
20
Temperature Dissolved Oxygen

0 April May June July Aug Sept Oct April May June July Aug Sept Oct

]/10 ols/r 7 |, 0.46 m?/d (0.053 cm?/s)

3 ~ two units
1
(@)

Temperature Dissolved Oxygen

10 -

Dominion Power Co.

20 N\

Figure by MIT OCW.




Vertical Diffusion from NATRE

N
\J

200

Height (m)
Second moment (m?2)

100

0 1 1 1

0 50 100 150

Concentration (scaled) Time (days) t

200

Figure by MIT OCW.

E, = Zzt ~0.11cm?/s (6 mo)

Ledwell, et al., 1993 ~0.17cm?®/s (2 yr)




Measured dissipation

N

From previous discussion

S, = kinetic energy density

Inertial sub-range
Turbulent S, ~e?/3k>/3

velocities N
generated by Dissipated by
mean flow —  molecular diffusion
’ —— k = wave number
27l L 2rln

Turbulent temperature variations similar to turbulent velocity variations
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Temperature Micro-profile
Y

T(2)
<T>

T=<T>+T

Measured with temperature
microstructure probe;
resolution < 1 mm

Z ¥

Generation (of temp variance)
~ E, (d<T>/dz)?
Dissipation (of temp variance)

~ x (dT'/dz)?
E, = turbulent eddy diffusivity

k = molecular thermal diffusivity




Formulae based on measured dissipation

f
V

Osborn-Cox (1972), Sherman-Davis (1995)

<Z> v = temp variance dissipation rate [K2s1]
2(6(T)/ 82)f Ty = <Ts 4T
< ;(> = 2« <(<’9T'Z / az)2> x = molecular thermal diffusivity [m2s]

| , I ~ 3 (accounts for gradient in T"in 3
IK<(8T ,102) > directions)

© o (a(T)ez)f
Osborn (1980)

,

E

N2 = (g/p)(dp/dz) [s]

&
E =  mix ¢ = TKE dissipation rate [m?s]

z N2

= const <= 0.2

Y mix
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Examples

Depth (m)

dT,/dz
| O D|
O
gaet
g ﬁ:puﬁ
chm .
0"
O o
1 i
24 25.5 27 0 -12 -6 0.1 1 10
o; (kg/m3) logjoKr (m?s1) logjo(e, m?s3) L¢ (m)

Profiles of (a) density and temperature gradient, (b) K, (¢) € and (d) centered-displacement
lengthscale L. The estimates of Kt and € include low-pass filtered versions.

Figure by MIT OCW.

Stevens, et al. 2000




/AR

Langmuir Circulation

Figure by MIT OCW.




Formulae for E,

N

Open waters, near surface

028H 2 Ichiye (1967); z = depth;
E, = 0028, (s, H,, T., L, = significant wave
T height, period and length

In presence of stratification and shear

-3/2
= {1+1_0 Ri} Munk & Anderson (1948);
Ri = gradient Richardson no

Ri — (9/ p)dp/dZ E,, = value at neutral
7 (du/ dz)’ stratification




Formulae for E,

N

Stratification only (near surface)
1076 Koh and Fan (1970)

E ‘8,0/82‘ [E, in cm?/s; dp/dz in g/cm?]

Stratification only (deep waters)

451072 Broecker and Peng (1982)
7 = 6p1 04 [E, in cm?/s; dp/dz in g/cm?]

Typical ocean

E,=0.1 (local) E, =1 (basin average) E, in cm?/s



Formulae, cont’d

'Rivers
E =xu.z(1-z/h) u« = friction velocity, h =
_— water depth, z = height above
Estuaries
_ 7z°(h—2)° - Pritchard (1971);
E, =nlu 1+ 4
== A+ AR) n = 8.59 x 1073,
zth-2)H., . £=9.57x1073,
_|_é» ( ) We2 /LW(1+IBRI)2 B=0276

h T

w

U = mean tidal speed




- , , o Kolesnikov 1961
N\ /\ Harremos 1967
N V Jacobsen (Defant 1961)
\ [0 Foxworthy 1968 (patch)
N\ B Foxworthy 1968 (plume)

<> Foxworthy 1968 (point source)

103

2
10‘

10

Vertical Diffusion Coefficient, E, (cm?/sec)

0.1 \ _
AN
\\
20N
AN
0.01 1 l
10-7 10-6 10-5 10-4 10-3 10-2 10-1

Density gradient, - 1 dp (m-1)
p dz

Koh and Fan (1970) Figure by MIT OCW. 100(dp/dz) (g/cm*)



Application: coastal sewage
discharge from multi-port diffuser

A
Y

Assume

> =300 m -
H=30m

lc
OO?
D- a

1=10m

u=0.1m/s T |
NF dilution Sy = 100 Y

@ 0

How far ds until Sp =107 ] "
(S:=5:5-=1000)

Formal solution by Brooks in Y TRN77

Section 2.8; approximate
solution follows



Sewage discharge, cont'd

i

¢V

U
—_—

X, 0 X¢ X
at x=0, o, ;T:O4b 12,000cm; o, =100,, =120,000 cm
2 T 12,0002 |"** 120,000% |
= 0.011t%% =>t =| - . = 22000 t, == | Z162,000s
0.011 0.011 0.011

x=u(t, —t ) = (0.1)(162,000 — 22,000) =14,000m=14km  Contrast with 30 m!



1014 I I . 100 km

UV

® Rheno
A 1964V
0 1962 111 North Sea
il © 1962 11
10" < 19611 -
®#1
- #2
~ A#3 Off C
T 102 0k (e 1410 km
o W #5
th ®#6
O New York Bight
1011‘ ® #a -
® #b
o o #ec Off
SF - 10 o #d California
— o #e
(0,,2 = 1000,,2) 10 o &f ° fa A Tkm
< Banana river .._:
1 Manokin river
10° -
2 — 2 ol
(120m)? = o,
108 4100 m
Day Week Month
107 L v | | 4€
103 10° 109 107
t (sec)
t, = 22000s t = 162000s Figure by MIT OCW.

x = u(t-t,) = (0.1)(162000-22000) = 14 km




Neglect of vertical diffusion

p
N
Reasonable? " 67 30 oo
| >
! ) 3 I ] . (p-1)x1000

ps =103 p,=100g/cm )
A
2P ~0.03

Jo,

8P~ 0,0003 | s
Sy P o, = 1.000 1.0297 1.030

op e A
—— =~0.0003/1000 = 3x10 /cm
82 g \

) )
Ezzlo 10 —=3cm’/s
oJp  3x10
00Z

conservatively small




Vertical diffusion, cont’d
1

/4R

O (2h) =5.8m

Z0 \/E

5, =0,°+2Et

z

- 580% + (2)(3)(140000) o,
—=117000 cm?

o, =10.8m
o _1080_, 4
580

concentration reduction = 9% of that
due to horizontal mixing; even smaller if
stronger density gradient chosen
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Figure by MIT OCW.
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Atmospheric, surface water and
ground water plumes

Similarities
#Same transport equation (porosity
included in some GW terms)

#Scale-dependent dispersion. Similar
mechanisms: non-uniform flow
(differential longitudinal advection plus
transverse mixing)

®E > E >>E,
Differences, too




Atmospheric Plumes

N

# Modest NF mixing
(wind quickly
dominates)

# Often large “point”
sources

# Time scales: minutes
to days

{i} NOn-uniform W|nd Image courtesy of usgs.gov.
caused by shear and
density stratification
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Stratification

L

For examples of plume types, please see:

http://www.environmenthamilton.org/projects/stackwatch/plume_types.htm




Typical analysis

HI )
—— Region of mathematical

dispersion underground
Real source
Image
source

—— Region of reflection

# Image source
for ground
level
exposure

# NF mixing
handled by
virtual
elevation

# Cooper and
Alley (1994)

Figure by MIT OCW.




Diffusion diagrams
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Figure by MIT OCW.

Turner (1970); Cooper and Alley (1994)




e Beers Wil Day Incoming Solar Radiation Night Cloudiness®
Speed? (m/s)

Strong® | Moderate® | Slightd | Cloudy (> 4/8) | Clear (< 3/8)

<2 A A-Bf B E F
2.3 o A-B B C E F .
3-5 3 B B-C C D I3 S
5-6 Z C C-D D D D %
>6 7 C D D D D

Notes:-

a) Surface wind speed is measured at 10 m above the ground.

b) Corresponds to clear summer day with sun higher than 60° above the horizon.

¢) Corresponds to a summer day with a few broken clouds, or a clear day with the sun 35-60°
above the horizon.

d) Corresponds to a fall afternoon, or a cloudy summer day, or clear summer day with the sun
15-35°.

e) Cloudiness is defined as the fraction of sky covered by clouds.

f) For A-B, B-C, or C-D conditions, average the values obtained for each.

* A = Very unstable, B = Moderately unstable, C = Slightly unstable, D = Neutral, E = Slightly stable,
and F = Stable.

Regardless of wind speed, Class D should be assumed for overcast conditions, day or night.

STABILITY CLASSIFICATIONS*

Figure by MIT OCW.




Groundwater Plumes

“-# No (dynamic) NF
# Distributed, poorly
characterized sources

# Multiple phases
(contaminant and
medium)

# Laminar (turbulent f
fluctuations replaced by
heterogeneity) w FEEE PP
# Time scales: months to e 5 _) 2‘.

decades ‘&




Heteorogeneity

# Causes non-uniform flow => macro-dispersion
# Often poorly resolved: handled stochastically
# Plumes often (very) non-Gaussian




MADE experiments at CAFB

A
Y

L

Please see:

http://repositories.cdlib.org/cgi/viewcontent.cgi?article=1408&conte
xt=Ibnl
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Length scale of hydraulic conductivity correlation

Figure by MIT OCW.

Longitudinal Dispersivity (m)
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Gelhar, Welty and Rehfeldt (1992) Dispersivity Data




Superposition: Puff models
MIT Transient Plume Model

Instantaneous
location of
end of NF

Figure by MIT OCW.

u=0.34cos (at + 7 /2)
v=0.18cos(wt +7/2) — 0.5

<~ m(ztt)
R Ty
exp_{[x—ic(tt D y=yetof }
Jr (t1tk) G (tt )
Adams (1995)
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