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1 Molecular Diffusion

#Notion of concentration
#Molecular diffusion, Fick’'s Law
#Mass balance

#Transport analogies; salt-gradient solar
ponds

#Simple solutions
#Random walk analogy to diffusion
#Examples of sources and sinks
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Motivation

#Molecular diffusion is often negligible in
environmental problems

®EXxceptions: near interfaces, boundaries

#:Responsible for removing gradients at
smallest scales

#®Analytical framework for turbulent and
dispersive transport




Concentration

N

# Contaminant => mixture
= Carrier fluid (B) and contaminant/tracer (A)
= If dissolved, then solvent and solute
s If suspended, then continuous and dispersed phase

# Concentration (c or p,) commonly based on
mass/volume (e.g. mg/l); also
= mol/vol (chemical reactions)
= Mass fraction (salinity): p,/p

# Note: 1 mg/l ~ 1 mg/kg (water) = 1ppm
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Molecular Diffusion

COrp,

One-way flux (M/L2-T)

= P W,
Net flux
=Wy (IOA]_ - pAz)

=—w, Op,l0z

N DAB
J,=-DzVp,



Ficks Law and Diffusivities
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—

J,=-DzVp,

0, O, - O, ~r
V()=a()l+§()1+g()k

D,z IS Isotropic and essentially uniform
(temperature dependent), but depends on A, B

Table 1.1 summarizes some values of D,

Roughly: D, ~ 101 cm?/s; D ~ 10 cm?/s

water




Diffusivities, cont’d
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Diffusivities often expressed through Schmidt no.

Sc =v/D

Roughly: v ;. ~ 10t cm?/S; v yater — 1072 cM2/s
G4
Sc ~ 10°

water

Also: Prandlt no. Pr = v/k (x = thermal cond.)
Add advection; total flux of A is:
N,;=pq—D pVp,

macroscopic velocity vector
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Conservation of Mass

£ Like a bank account except
expressed as rates:
A (rate of) change in account =
Z .
NNa | (rate of) (inflow — out) +/-
N ) — (NA)X+AX .
NaJx "y (rate of) prod/consumption
Ay Example for x-direction
AX

out = (NA)x+AxAyAZ = |:(NA)x +(52VA
X

net in = {— (aNA JAX:|A)/AZ

Ox

s
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Conservation

Z

of Mass, cont’d

Account balance
= p AxAyAz
Rate of change of account balance

0
= — AxAVvAz
Py (/OA) )/

Rate of production
=r,AxAyAz
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Conservation of Mass, cont'd

Sum all terms (incl. advection in 3D)

op, O 0 0
+ N, +—(N,), +— (N
Ot ax( A)x ay( A)y aZ( A)Z

%P +V-N,=r,

0
y t

Flux divergence (dot product of two
vectors is scalar)

For carrier fluid B

0Py Y,
+V-N,=r
o1 B =13




Conservation of Mass, mixture

| Py =775 Conservation of total mass
]6\] T NB did Pa tPg =P
op
~ TV (pa)=0
%? =Vp=0 Liquids are nearly incompressible

V-g=0 Divergence = 0; Continuity




Conservation of Mass, contaminant

Py=cC drop subscript A
O .
a—j +V-(cq)=V-(DVc)+r Conservative form of mass cons.
oc L 2
5+c q+q-Ve=DVc+(WD)(Ve)+r
oc 4 :
a_+é.VC:DV26V—I—r N.C. form
l
oc

— = DVZCV If é = O => Ficks Law of Diffusion

Ot




Heuristic interpretation of Advection and diffusion

& C
A .
t-1 Advection
v UAt _ _
Flux ~ negative gradient
\
o |AcC
I > X
C
4 Diffusion
h
‘. Difference in fluxes
M (divergence) ~ curvature
t_l ~ S el
J R J —t—

: > X
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Analogs

Gc

o
oT

ot
aq
Ot

= DV?c

= VT

Ficks Law (mass transfer)

Fourier's Law (heat transfer)

—>

+(g-V)g =vV? q+— Newton’s Law (mom. Transfer)

v/D

V/K

Sc
Pr

Jo,
Alr Water
~1 ~103
~0.7 ~8

D~k~v D<<k<vVv




Example: Salt Gradient Solar
~Ponds (WE 1-1)

T like El Paso Solar Pond

dense brine



http://en.wikipedia.org/wiki/Solar_pond

Solar Pond, diffusive salt flux to UCZ

! §=509 Area = 10,000 m?2
AV e

Z.=0.3m " ucz

S=250%0
C=pS

Cucz = (1033 Kg/m?3)(50x10-3 Kg/Kg) = 52 Kg/m3
Cpey = (1165 Kg/m3)(250x10-3 Kg/Kg) = 291 Kg/m?3
J, =Ddcldz
=(2x10°)(239 Kg/m?3)/1.2m = 4.0x10-" Kg/m?2-s
= 344 Kg/day




Solar Pond: diffusive thermal flux to UCZ

d — 2
O\ VAREN ] /
1 22 » 1 -
‘ (I)s(z) — (I)sn( 'B)e'
/
— 0]
T2 80°C B= fraction of ¢, absorbed at surface
d’T B} n = extinction coefficient
0=pC,x 2 1= F)g,e” C, = heat capacity (4180 J/Kg°C);
o= 2* e tez+e, k = thermal diffusivity (1.5x10-7 m2/s)
1 ¢* =n(- P, | pC,x

cy,, C, from T=T, at z,, T=T,at z,




Solar Pond: thermal flux

N

b, = 250 W/m?

T, = 30°C
O\ VAREN ] /
+z, \T
—_ Z
° ‘ (I)s(z) — (I)sn(l'B)e'nZ
1/
/
T, = 80°C

J,=pC x(dTldz),__
Lol w-pyg, {e +

272

(e™2—e ™) }

= oC
e 77(22_21)
z, =0.3m; z, = 1.5m, f=0.5,1 = 0.6 => J, = 7 W/m?

Compare with (1-0.5)(250)exp(-0.6*1.5) = 51 W/m?
reaching BCZ (—13% lost)
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Rankine Cycle Heat Engine

Evaporator

» Turbine

generator

1

Cooling water

Condenser

Figure by MIT OCW.



Solar Pond: total energy extraction

N

b, = 250 W/m?

T, = 30°C
O\ \V \ ] /
PR 22 » nZ
‘ (I)s(z) = (I)sn(l'B)e'
i
i 80°C
T, = 80°
’ % of ¢,
Energy Flux at surface 250 W/m? 100
Energy Flux reaching BCZ 51 20
Energy Flux extracted 34 14 __ Carnot efficiency
= (T, TD/(T,+273
Electricity extracted (theoretical) 4.8 ‘/2 Ne = (T2 T/, )

Electricity extracted (net actual) 2.4 1 [24 KWe for 1 ha]



Simple Solutions
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Inst. injection of mass M

l

O A
) > X
% _pdc
ot Ox
bc: ¢c=0 at x=xw
M alternative

+

c. ¢c=—20 t t=0
ic. ¢ y (x) a

r:%5(x)5(t) with ¢=0 at t=0
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Simple Solutions, cont’d

Inst. injection of mass M

l >

> X

Solution by similarity transform (Crank, 1975) or inspection

2

B = M -
c=——e c(x,t)= e 4P
" 2 AN D1
AT cdx = M Add a current g

c(x,t) =

M
e
M =2ABA~\ 7D 2 A~ Dt




Gaussian Solution

4 C

l

\




Spatial Moments
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Interpretation
m, = Ic(x,t)dx M =m_ A Mass; indep of t
% "
o0 _ 1 _
x, =—t= ut Center of mass
m, = jcxdx m, =T

2
2 M, m, Plume
_ 2 o =—=—|—=| =2Dt .
m., = jcx dx
2 X b [lej variance

. 0
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Spatial Moments, cont'd

Relationship of moments to equation parameters

2

m., = e4Pt x4 dt
‘ LZA\/?Z’Dt
_oM
A
zezﬂz ZMDt/A :ZDZ
m M/ A

(0]

Without current, odd moments are O
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Spatial Moments, cont'd

Rewrite in terms of o or in 3-D (isotropic)
12 (x2+y2+22)
M - M
c(x,t) = e 4D c(x,t) = e
2 A~ Dt 8(7Dt)*'?
M _x_22 (x®+y%+22)
— e 20 L M e 252
AN ?2r 0o, (27?)3/2 I

Plume dilutes by spreading:
In 1-D, ¢ ~ t12 ~ 5,1

In 3-D, ¢ ~ t3/2 ~ 53
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Moment generating equation

2 0
%:D% m, = Ixicdx
X

—00

Approach 1: moments of c(x,t) => o2 = m?/mo = 2Dt

Approach 2: moments of ge => moment generation eq.

j x' (each term) dx




Moment generating eqg., cont’d

A 2 0
T 0Oc o0°c ,-
—=D— m, = jx cdx
Ot 8x -
i dm
h %y == [edv="
Ot I X cax ”
moment '[D—dx g -0
ox)_,
O?x @dxggwxzcdx—dmz
2nd T oA o dr

00 2 0

moment szg—dx % —ZJAdex——Zyé’o +2chdx=2Dm0
’ X
% O O —©




Moment generating eqg., cont’d

I ~ 2 o0
o oc 0°c -
8_ :D@—2 m. = jx’cdx
l X i
Oth
dZ’O =0 => m, = const = M/A
moment 4
dm, _ 2Dm
2nd dt ’ . 2 _ 2 —
: => do?/dt = 2D or o4 = 2Dt
moment do =2Dm,

" dt




How fast I1s molecular diffusion?
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A

Creating linear salinity distribution
>>_ from initial step profile

Assume 80 cm tank; 40 2cm steps

" S

Time to diffuse: o2 = 2Dt / Table 1-1
t = 64/2D ~(2cm)?/(2)(1.3x10° cm?/s)

= 1.5x10°s ~ 2 days slow!

If thermal diffusion (100 x faster), t < 1 hr
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Spatially distributed sources

Co

@:Da_zc 0
ot Ox?

bc ¢c=0 at x=wo

c=c, al X=-—©

orc=c/2atx=0

ic c=c, for x<0 at t=0

o

c=0 for x>0 at

t=0

X v
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Spatially distributed sources

: > S
dé > <
5 » g
de(&,t) = aM e_f—; _ Cds e_f—;
| 2 A~ 7Dt 2~ Dt

T cdé <= ] X c X
c(x,t) = | —=—=e*" =—2|1- erf[ = —2erfc

£ 2~ Dt 2 2~/ Dt 2 2~/ Dt




Error Function 2

¢ £ N
erf(o)
/ erfc(m)
1 >
erf (@) = %Te“zda erf(0)=0
o erf () =1

erfe(w) = % T e da erfc(x) =1—erf(x)




N

Example: DO in Fish aquarium (WE 1-4)

et at 27°C)

C: C 2C-C t>0: ¢(0)=c,=10 mg/I (c,, at 16°C)
| | 7y ¢©

t c(z,t):cl+%2(cz —¢,)erfdz/ 24/Dr)

=4 _ertdlz /24D

t=0: c=c,=8 mg/I (c

sat

sat

C, ¢
v
£ Evaluate at z =15 cm, D = 2x105 cm?/s (Table 1-1)
t z/(4Dt)0-> erfc[(z/(4Dt)°-9]
1hr 28 0] :
. Agalin,
td il 10 very slow!

1 mo 1.0 0.15




Diffusion as correlated
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movements

x=0att=0 x(t) =

p(X,1)

ju(t')dt'

> X

Analogy between p(x) and c(x); ergotic assumption

For many particles, both distributions become Normal
(Gaussian) through Central Limit Theorem




Statistics of velocity
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L

=0 mean velocity

u® = const. variance

u()u(t—7) =u(O)u(r) =u(-r)u(0) auto co-variance

T :
) _ R(7) auto correlation




Statistics of position

N

L

x(1) = [u(t')dr

x = ju(t')dt' -~ jﬁ(t)dz =0

0

x*(#) increases with time, as follows

dx;(t) L 2x(t)% _ ZHu(t')dt}u(t) L Z_Eu(t)u(t')dt'
d x;t(t) C 2u2—(t)J:R(t _£)dt' = 2u2—(t)_(i;R(f)d2'

_dx’ _do® _—
2dt  2dt
2

[D] = [V°T]
O

Earlier, D=w,{, [VL] or D:2_t [L2/T]

D _[R(f)dr Taylor's Theorem (1921); classic
0




Random Walk (WE 1-3)

Special case: u(¢t) =U or —U direction changes randomly after A

N

N
Walker's position at time t=NAt ~ x= > uAt
1

Probability distribution )~ N! ( L J
BT CUN
2 )"\ 2 )
3/8 Bernoulli Distribution
278 Approaches Gaussian
1/8 for large N

Example for N=3

~r




Statistics of position

N
\J

f(t)ziﬁ(t)zO

(Zuﬁtj —Atzlul +u,...u, +...uN)(u1 +u, +...uN)J

= NAU? =tU’ At = tAx° / At

2 2 2
p_O UM A
2t 2 2At

Alternatively, derive D from Taylor’'s Theorem
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Examples of Sources and
Sinks (r terms)

@15t order

#0" order

#2"d order
#Coupled reactions
#Mixed order
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15t Order

L

Example: c/C,
radioactive decay 1 T
dc

_— 0.5
dt ke 0.37 \.
cle, =e 0 .

t, k? Lo
Half life e-folding time

Linearity => 15t O decay multiplies simple sol'n by e*t; e.q.

Also very convenient in particle tracking models o= M e—l{t

2 A 7Dt
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Ot Order

S/S

Example: silica uptake 0

by diatoms (high diatom  }
conc)

as _

dt

S=S —Bt .

S=substrate (silica) concentration 5o/8

B=rate (depends on diatom
population, but assume large)



2nd Order

N

Example: particle-
particle 1 T
collisions/reactions;
flocculant settling)

? = —BCZ

! C
c 1 0 i
c, 1+ Bitc,

Behavior depends on c,; slower than e

Can be confused with multiple species undergoing
15t order removal



Coupled Reactions
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L

Example: Nitrogen oxidation

dN,
=—K..N N, = NH,-N
Jf 124V1 1 3
dN
dt2 = K,N; — KN, N2 — Noz'N
dN.
T;ZKZSNZ N3 — NO3-N

If N's are measured as molar quantities, or atomic
mass, then successive K’s are equal and opposite




Mixed Order—Saturation Kinetics
(Menod kinetics)

N

Example: algal uptake of nutrients—focus on algae

dC 1h kS I max 4T
d S+S§, R

¢ = algal concentration
S = substrate concentration
S, = half-saturation const

(o 4

dc kS
— ~=="=k's (1t Order
S<<§,=> = ( )

S>> SO == @:
dt

o

k (Ot Order)




1 Wrap-up

N

"# Molecular diffusivities

D=wl Molecular motion; Eulerian frame
do?
D= 252 Method of moments

D= ;‘[R(f)df Molecular motion; Lagrangian frame
0
# D is “small” — 1x10-> cm?/s for water
# Inst. point source solutions are Gaussian; other
solutions built from

= Spatial and temporal integration, coordinate translation,
linear source/sink terms
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