Answers to 1.76 Practice Problems 1 - 1) 5.0 - 2) 4.0 - 3) 3.0 - 4) 9.0 - 5) 10.0 - 6) 11.0 - 7) 7.0 - 8) 6.8 - 9) 6.5 - 10) 5.0 - 11) 4.2 - 12) 3.5 - 13) 9.0 - 14) 9.8 - 15) 10.4 | Name | Chem Formula | Species formed in aqueous sol'n | Acid/ Base/ Ampi/ Salt | |-----------------------|------------------------------------|---|--| | potassium
chloride | KCl | potassium ion, K ⁺
chloride, Cl ⁻
(very soluble, >10g/100mL, KCl (aq) formation unlikely) | salt | | nitric acid | HNO ₃ | hydrogen ion, H ⁺ nitrate, NO ₃ | acid | | calcium sulfate | CaSO ₄ | calcium ion, Ca^{2+} sulfate, $*SO_4^{2-}$ $CaSO_4$ (aq); (slightly soluble, $log K_{sp} = -4.2$) (*can act as a base, however, no HSO_4 formation, HSO_4 << SO_4^{2-} in neutral waters, $pK_a = 2.0$) | salt | | calcium
hydroxide | CaOH ₂ | hydroxide, OH-
calcium ion, Ca ²⁺ | basic | | calcium
carbonate | CaCO ₃ | calcium ion, Ca^{2+} carbonate, CO_3^{2-} carbonate + $H^+ \Leftrightarrow bicarbonate$: $CO_3^{2-} + H^+ \Leftrightarrow HCO_3^{-} (pK_a=10.33)$ | basic | | ammonium acetate | CH ₃ COONH ₄ | acetate + H ⁺ \leftrightarrow acetic acid: CH ₃ COO ⁻ + H ⁺ \leftrightarrow CH ₃ COOH
ammonium \leftrightarrow ammonia + H ⁺ : NH ₄ ⁺ \leftrightarrow NH ₃ + H ⁺ | amphiprotic, a buffer, stabilizes the pH over a given capacity | | ammonium
nitrate | NH ₄ NO ₃ | nitrate, NO_3^- ammonium, $*NH_4^+$ (*can act as an acid, however, $pK_a = 9.2$, so will NOT dissociate significantly in neutral waters) | salt | | hydrogen
sulfide | H_2S | hydrogen sulfide \Leftrightarrow bisulfide $+$ H ⁺ , H ₂ S \Leftrightarrow HS ⁻ $+$ H ⁺ (sulfide, S ²⁻ not formed significantly, HS ⁻ \Leftrightarrow S ²⁻ $+$ H ⁺ , pK _a =12.9) | acid | | sodium nitrite | NaNO ₂ | sodium ion, Na ⁺ nitrite, NO ₂ (no HNO ₂ formation; HNO ₂ << NO ₂ in neutral waters, pK _a = 3.3) | salt | Refs: Umland & Bellama, *General Chemistry*, 3rd Edition, Brooks/Cole Publishing, 1999 Morel & Hering, *Principles and Applications of Aquatic Chemistry*, Wiley & Sons, 1993