Answers to 1.76 Practice Problems 1

- 1) 5.0
- 2) 4.0
- 3) 3.0
- 4) 9.0
- 5) 10.0
- 6) 11.0
- 7) 7.0
- 8) 6.8
- 9) 6.5
- 10) 5.0
- 11) 4.2
- 12) 3.5
- 13) 9.0
- 14) 9.8
- 15) 10.4

Name	Chem Formula	Species formed in aqueous sol'n	Acid/ Base/ Ampi/ Salt
potassium chloride	KCl	potassium ion, K ⁺ chloride, Cl ⁻ (very soluble, >10g/100mL, KCl (aq) formation unlikely)	salt
nitric acid	HNO ₃	hydrogen ion, H ⁺ nitrate, NO ₃	acid
calcium sulfate	CaSO ₄	calcium ion, Ca^{2+} sulfate, $*SO_4^{2-}$ $CaSO_4$ (aq); (slightly soluble, $log K_{sp} = -4.2$) (*can act as a base, however, no HSO_4 formation, HSO_4 << SO_4^{2-} in neutral waters, $pK_a = 2.0$)	salt
calcium hydroxide	CaOH ₂	hydroxide, OH- calcium ion, Ca ²⁺	basic
calcium carbonate	CaCO ₃	calcium ion, Ca^{2+} carbonate, CO_3^{2-} carbonate + $H^+ \Leftrightarrow bicarbonate$: $CO_3^{2-} + H^+ \Leftrightarrow HCO_3^{-} (pK_a=10.33)$	basic
ammonium acetate	CH ₃ COONH ₄	acetate + H ⁺ \leftrightarrow acetic acid: CH ₃ COO ⁻ + H ⁺ \leftrightarrow CH ₃ COOH ammonium \leftrightarrow ammonia + H ⁺ : NH ₄ ⁺ \leftrightarrow NH ₃ + H ⁺	amphiprotic, a buffer, stabilizes the pH over a given capacity
ammonium nitrate	NH ₄ NO ₃	nitrate, NO_3^- ammonium, $*NH_4^+$ (*can act as an acid, however, $pK_a = 9.2$, so will NOT dissociate significantly in neutral waters)	salt
hydrogen sulfide	H_2S	hydrogen sulfide \Leftrightarrow bisulfide $+$ H ⁺ , H ₂ S \Leftrightarrow HS ⁻ $+$ H ⁺ (sulfide, S ²⁻ not formed significantly, HS ⁻ \Leftrightarrow S ²⁻ $+$ H ⁺ , pK _a =12.9)	acid
sodium nitrite	NaNO ₂	sodium ion, Na ⁺ nitrite, NO ₂ (no HNO ₂ formation; HNO ₂ << NO ₂ in neutral waters, pK _a = 3.3)	salt

Refs: Umland & Bellama, *General Chemistry*, 3rd Edition, Brooks/Cole Publishing, 1999 Morel & Hering, *Principles and Applications of Aquatic Chemistry*, Wiley & Sons, 1993