
 1

msLumped-Parameter (zero-dimensions!) groundwater model of Bangladesh 
 
 
Your goal in this problem set is to develop a ‘bucket’ model for the hydrology of our study site in 
Bangladesh.  Using this model, you will investigate how the development of dry-season irrigated 
agriculture in Bangladesh may have affected its groundwater hydrology. 
 
Figure 1 is a conceptual representation of our study site.  We are interested in modeling the hydrology 
of the sandy aquifer, which underlies our entire study site and is confined by a relatively impermeable 
clay layer.  The fraction of the aquifer area covered by each of the ponds (fp), rice fields (fag), and 
rivers (fr) is: 
fp=0.1 
fr=0.02 
fag=0.65 
 
Ha, Hp, Hr  refer to the heads of the aquifer, pond, and river respectively. 
In this model, you can assume that trees at our site have shallow roots that do not extend all the way 
into the aquifer.  So, by reference to Figure 1, ETtree, which is the flux out of the aquifer due tree 
transpiration, is equal to zero.  
 
The coupled equations for the rates of change of Ha and Hp are: 

 

 
In Equation 1, pE  is the rate of evaporation from the 
pond per unit pond area.  In Equation 2, qi is the net 
flux out of the aquifer resulting from the irrigation of 
rice fields, per unit aquifer area.  The following 
questions will help you develop models for pE and qi.  
The sediments between the pond and aquifer have a 
conductance of kp =0.01 day-1.  The sediments 
accumulated at the river bottom have a higher 
conductance of kr =0.1 day-1.  The storativity (S) of the 

aquifer is S=0.01.  The units of 
dt

dH p and 
dt

dH a  are 

[Length/Time].   
 
 
 
The heads in the rivers at our site are controlled by the water levels in the Ganges river, and are not 
affected by the aquifer head.  So, the evolution of Hr during the dry season is independent of Ha.  Field 
data for Hr as a function of time are plotted in red in Figure 2. 
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Assume that the only significant flows into and out of the aquifer occur during the dry season, since 
during the rainy season (also referred to as the monsoon season or the flooding season), the heads of 
the aquifer, rivers and ponds are equal so that no flows occur between them.   
 
Your goal is to model the evolution of Ha and Hp over the duration of the dry season.  Based on Figure 
2, the dry season extends approximately between November 1st and May 31st.  At its beginning, 
following the flooding season, the heads in the rivers, ponds, and aquifer are all at 4m.   The following 
exercises and questions will guide you through developing your model and understanding your results. 
 
a)   The river head, Hr, affects the aquifer head Ha (see Equation 2).  However, Hr itself isn’t affected 
by Ha since the Ganges River controls it.  We will work with Hr as a known input into Equation 2.  
This can be done by specifying the values of Hr at different times in the dry season based on collected 
field data (Figure 2).  Alternatively, we can use a simplified representation of the Hr data shown in 
Figure 2 by modeling Hr(t) as a Sine function of time t, so that the resulting function resembles the 
collected data.  
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Hamp is the amplitude of Hr(t), Hamp = 2.5 m 
tspan is the duration of the dry season.   
 

1.   Check that this equation for Hr(t) gives appropriate values of Hr for t=0, t=tspan,  
      and t=0.5*(tspan). 

2.  Show that another equivalent equation for Hr(t) is 4** +⎟⎟
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b)   Evaporation at our study site can be modeled with reference to the evaporation at the nearest 
meteorological station in Munshigonj (with the crystal ball).  Figure 3 shows the estimated 
evaporation at Munshigonj, which will be referred to as the reference evaporation (Eo).  Eo is usually 

Figure 2: Data on Aquifer 
(green and brown), River 
(red), and Pond (blue) heads 
at our study site. 
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expressed as a flow per unit area of the evaporating surface with units of [Length/Time].  In Figure 3, 
the units of Eo are mm/month.   

 
Eo data is collected regularly and reliably, so it is useful to estimate evaporation at our site in relation 
to Eo.  The actual evaporation rate of the ponds at our site (per unit pond area) can be modeled as  

Ep = Cp*Eo 
Cp is a coefficient estimated empirically, by collecting field data on the evaporation rates of the ponds 
and relating them to Eo.  Cp was found to be 1.4. 
 
Similarly, the actual transpiration rate of rice plants in the agricultural fields at our site (per unit field 
area) can be modeled as Eag = Cag*Eo.  Cag was found to be 1.1.   
 

•  Using data from Figure 3, estimate the mean value of Eo during the dry season.  You will 
need to convert your result into units of meters/day, since it will be an input into your 
equations for dHa/dt and dHp/dt. 

 
c)   Assume that the farmers pump out water from the aquifer to irrigate their rice fields at a rate p.  
The rice crop transpires some of the water applied to the fields, and the rest percolates back through 
the clay layer into the aquifer.   
 

1-  If you ignore the lag between the times when water is applied to the fields and when it 
reaches the aquifer, what is the net flux out of the aquifer that results from irrigation (labeled 
qi in the equation for dHa/dt)?  Use the equation for Eag in part (b) to express qi in terms of 
known quantities.  Make sure you express it per unit aquifer area, since it will be one of the 
fluxes in Equation 2 that determine dHa/dt.   

 
2-  Figure 2 shows that the farmers do not irrigate their crops during the entire dry season. 
Write a simple model for qi(t), using your answer to part (c) and information on the start and 
end of the irrigating period from Figure 2.   

Figure 3 
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d)   Code the system of equations for dHa/dt and dHp/dt into a Matlab function M-file, which defines 
your differential equations and is an input file for the ode45 function.  The aquifer head and pond head 
should be the only unknowns in your equations, in addition to your independent variable t.  Make sure 
you define all other variables and parameters you include in your equations.  Solve for your aquifer 
and pond heads using the ode45 function.  ode45 outputs the solutions (Ha(t) and Hp(t)), as well as the 
vector of time points (t) for which Ha and Hp are solved.  Click on the button “Workspace” on the left 
side of your Matlab window to see these outputs (Figure 4).   
 

 
 
In the Workspace window, double click on the vector of time points and on the matrix of heads to see 
their values.  What are the two columns of the head matrix?  
 

1-  Plot the ode45 solutions for Ha(t) and Hp(t).   Figure out how to plot Ha(t) separately: to 
retrieve the values for Ha(t) separately from the head matrix output by ode45, you need to 
specify which rows and which column of the head matrix you’re interested in. 

 
2-  Overlay on your plot of Ha(t) and Hp(t) the plot for river head Hr(t).  To do this, you will 
need to re-define the equation for Hr(t) at the command prompt, even though you’ve defined it 
in your initial function M-file.  This is because any variable or parameter you define in your 
function M-file is internal to that function.  The only outputs into your Workspace are the 
ode45 solutions, i.e. your aquifer and pond heads and the vector of time points t.  Confirm that 
once you define Hr at the command prompt, it shows up in your Workspace.  How many rows 
does the Hr vector have?  Why?  To overlay the Hr(t) curve on top of your plot for Ha(t) and 
Hp(t), type hold on at the command prompt before entering the plot (t,Hr) command.  

e)   Interpret your resulting plot.  How does the onset of irrigation affect Ha(t), Hp(t) and Hr(t)?  
Compare your plot to the data presented in Figure 2.  
 

Figure 4 
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f)   Think about how you might improve your model so that it better reflects the conditions at our 
study site.  As you elaborate your model, run it and plot the solutions for Ha(t) and Hp(t), then overlay 
the curve for Hr(t).  See if your modifications to the model produce results that agree better with the 
data in Figure 2.  Below are a couple of suggestions for improving your model.  The first suggested 
modification is required, the second is optional, and you can come up with other possible 
modifications.  If you have an idea for improving your model, Hanan can help you with the coding.  
 

1-  In part b, you specified Eo to be a constant value equal to the average value of Eo over the 
dry season.  Based on the data in Figure 3, formulate a better model for Eo(t) and code it into 
your function M-file.   

  
2- (OPTIONAL, but produces nice results)  The qi flux you described in (c-1) is the 
maximum flux when all the rice fields are being irrigated.  However, this maximum flux isn’t 
maintained during the whole irrigating period, since many fields are irrigated for only a 
portion of this period.  To account for this, include a factor ri  in your equation for dHa/dt, 
which multiplies qi and specifies the fraction of agricultural area that is actually irrigated at 
any time t.  Define ri(t) as a Sine function of t, varying from 0.5 at the start of the irrigating 
period, to 1 in the middle of this period, and back to 0.5 at its end.  This model for ri(t) implies 
that half the rice fields are actually irrigated initially, and this fraction increases with time until 
all the fields are being irrigated, and then proceeds to decline back to 0.5 at the end of the 
irrigating period.  ri(t)  must be specified as zero outside the irrigating period.  Refer to (c-2) 
for information on the extent of the irrigating period, and to part (a) to remind yourself how to 
model a variable as a Sine function of time.   

  
g)   So far, you’ve been looking at the solutions for the aquifer and pond heads.  These are evolving in 
time due to the fluxes between the different water bodies.  In the next few questions you will be 
investigating these fluxes.  
 

1-  Define the equation for FluxP(t), the flux between the aquifer and the pond per unit area of 
aquifer.  In your equation, when is the result for FluxP positive, and would that imply recharge 
to or discharge from the aquifer?  If needed, adjust the signs in your equation so that a positive 
FluxP indicates recharge to the aquifer, i.e. flow from the pond to the aquifer. 
 
2-  Similarly, define the equation for FluxR(t), the flux between the aquifer and the river per 
unit area of aquifer.  In your equation, when is FluxR positive, and would that imply recharge 
to or discharge from the aquifer?  If needed, adjust the signs in your equation so that a positive 
FluxR indicates recharge to the aquifer. 
 
3-  Create a new Matlab M-file, in which you code the equations for FluxP(t) and FluxR(t).  
Make sure you name the variables defined by these equations: FluxP and FluxR (you’ll soon 
see why this is necessary).  You will be running this script after you run ode45, so it will use 
the solutions for Ha(t) and Hp(t) that ode45 produces.  As in part (d-1), to retrieve the solutions 
for Ha(t) separately, you need to specify which rows and which column of your output head 
matrix you’re interested in.  Similarly for Hp(t).  Your script will also use the vector of t values 
(time points) produced by ode45.  Remember that you need to define any other parameters or 
variables used in your equations for FluxP(t) and FluxR(t) (such as Hr, kp, kr, fp and fr), even 
though you’ve defined them in your initial function M-file.  This is because these variables and 
parameters are internal to your function, and so aren’t saved by Matlab into your Workspace 
when you run ode45 (this is explained in part d).   
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4-  The net flux out of the aquifer due to irrigation, per unit aquifer area, is  
FluxI(t)= −ri(t)*qi(t) or simply −qi(t), depending on whether or not you completed the optional 
part (f-2).  Add the equation for FluxI(t) to your new M-file.  Name the variable defined by this 
equation: FluxI.  Remember you will need to define any variable or parameter you use in this 
equation that is not an output of ode45.  Use the models for qi(t) and Eo(t) that you created in 
parts (c-2) and (f-1), respectively.  Since qi(t) and Eo(t) have different values depending on the 
time period (for example, qi(t) is zero outside of the irrigating period), you need a “for loop” 
that specifies these variables for every time point in the t vector output by ode45.  Instructions 
to help you write the code for FluxI(t) are available on stellar under “Materials”, in the 
document “FluxI.doc”.  Does your equation produce positive or negative values for FluxI(t)?  
Does FluxI(t) constitute discharge from or recharge to the aquifer?     

 
i)   Run your new script by typing its filename at the command prompt, to obtain solutions for 
FluxP(t), FluxR(t), and FluxI(t).  Remember that FluxP(t) and FluxR(t) are functions of Ha(t) and 
Hp(t), so you need to have run ode45 first to obtain the solutions for the aquifer and pond heads.   Plot 
these fluxes and interpret your results.  Note especially changes in sign in FluxP(t) and FluxR(t).  
What do they mean?  Are they consistent with your plot for Ha(t), Hp(t) and Hr(t)?  Also interpret 
changes in the slopes of these flux curves.  
 
j)  From the “Materials” section of the stellar website, download the Matlab script “TotalFluxes.m” 
and save it into your current directory, where you are saving your other scripts.  Run it to obtain 
solutions for the variables: totaldischargeP, totalrechargeP, totaldischargeR, totalrechargeR, and 
totaldischargeI.  The TotalFluxes.m script uses your results for FluxP(t), FluxR(t), and FluxI(t).  That 
is why you had to give specific names to the vectors containing the solutions for these fluxes.  The 
TotalFluxes.m script integrates these fluxes over the duration of the dry season to compute the 
variables:  
 
totaldischargeP:  The total discharge from the aquifer to the pond per unit aquifer area over the dry season. 
totalrechargeP:  The total recharge from the pond to the aquifer per unit aquifer area over the dry season. 
totaldischargeR:  The total discharge from the aquifer to the river per unit aquifer area over the dry season. 
totalrechargeR: The total recharge from the river to the aquifer per unit aquifer area over the dry season. 
totaldischargeI: The total flow out of the aquifer due to irrigation per unit aquifer area over the dry season. 
 
Once you run the script, Matlab saves these variables and their values into your Workspace. 
 

•  Confirm that the variables representing flows out of the aquifer have negative values, while 
those representing flows into the aquifer have positive values. 

 
1-  What is the total flow out of the aquifer per unit aquifer area over the dry season?  What is 
the total flow into the aquifer per unit aquifer area over the dry season?   
 
2-  What is the net change in aquifer head over the dry season (refer to your plot for Ha, Hp, 
and Hr or plot Ha(t) again)?  Given that S=0.01, what change in volume of water per unit 
aquifer area does this correspond to?   
 
3-  Based on your answers to (j-1) and (j-2): does your model for the aquifer head conserve 
mass?  
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k)  The aquifer at our study site has a depth D=100m, and average porosity Ө = 0.25  (25%).   
 

1-  What is the volume of water contained in the aquifer? 
 

2-  Assume that over a year, the only flows into and out of the aquifer at our site occur during 
the dry season.  Using your answers to (j-1) and (k-1), calculate the residence time of water in 
the aquifer.  If you find that the total outflows from and inflows into the aquifer are not 
equivalent, take their average.  

 
l)  Use your model to figure out how the aquifer’s water budget was changed as a result of the 
development of irrigated agriculture in Bangladesh.    
 

1-  Adjust your model so that no water is extracted from the aquifer for irrigation.  You can do 
this by changing the value of fag to 0 in your initial function M-file that defines your system of 
equations for dHa/dt and dHp/dt. 
 
2-  Run ode45, and plot Ha(t) and Hp(t).  Overlay the plot of Hr(t).  Compare your plot for 
Ha(t), Hp(t) and Hr(t) in the absence irrigated agriculture to the plot of these heads that you 
produced when you accounted for irrigation in your model.   
 
3-  Run the M-file script you wrote that solves for FluxP(t), FluxR(t), and FluxI(t).  Plot these 
fluxes.  Again, compare these results, in the absence of irrigation, to the results of the model in 
which you accounted for irrigation.  
 
4-  Run the script you downloaded, “TotalFluxes.m”.  Compute the residence time of water in 
the aquifer in the absence of pumping for irrigation.  Compare it to the residence time that you 
computed in (k-2). 

 


