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7.9 Coastal upwelling in a two-layered sea

When a steady wind blows along the shore, an Ekman drift is induced that leads to mass
flux perpendicular to the wind. Consider the eastern coast in the northern hemisphere. If
the wind blows to the north, so that the coast is on its left (west), there is an Ekman drift
with mass moving away from the coast to the east. Fluid must be replenished from below, so
that the interface must rise, see figure 7.9.1. This is called coastal upwelling, first analyzed
theoretically by Kozo Yoshida (1959). This phenomenon is important to life in the ocean.
Small organisms such as phytoplanktons need nutrient and sun light to prosper. If upwelling
occurs near a coastal water, nutrients can be tranported from great depth to near the sea
surface where sun light is rich. Fishes are therefore more bountiful.

Figure 7.9.1: Physical mechanism of coastal upwelling. From Cushman-Roisin

We consider a spatially uniform wind blowing along a coastline x = 0. According to the
normal mode formulation the equations for modes k = 1, 2 are
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where Ūk, V̄k and ζ̄k are related to the depth-integrated fluxes U, V, ζ in the upper layer and
U ′, V ′, ζ ′ in the lower layer by

Ūk = akU + bkU
′, V̄k = akV + bkV

′, ζ̄k = akζ + (bk − ak)ζ
′ (7.9.4)

and the normal form of wind forcing is

τk = akτ
S
y (7.9.5)

Assume that the wind oscillates in time at the frequency ω so that

τS
y = �

(
iτoe

−iωt
)

= τo sin ωt (7.9.6)

Let us look for the response that is also sinusoidal in time, and write the solutions as

(Ūk, V̄k, ζ̄k) = �
{
(Uk, Vk, ζk)e

−ıωt
}

then
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∂x
(7.9.7)
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ρ
(7.9.8)
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∂x
= 0 (7.9.9)

From Eqns. (7.9.7) and (7.9.8) we solve for Uk and Vk,
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Substituting Eqn. (7.9.10) into (7.9.9), we get

−iωζk +
1

f 2 − ω2

(
iωgβkh

∂2ζk

∂x2

)
= 0

or,
∂2ζk

∂x2
−
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f 2 − ω2

gβkh

)
ζk = 0. (7.9.12)
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Let us limit our attention to low freuencies so that so that f 2 > ω2. The solution bounded
at x ∼ ∞ is,

ζk = Ake
−x/Rk , (7.9.13)

where

Rk =

√
gβkh√

f 2 − ω2
. (7.9.14)

is the modified Rossby radius of deformation. As b.c at x = 0, we require Uk = 0, hence
from (7.9.10)
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∂ζk

∂x
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)
= −fτk

ρ

The coefficient is
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fτk

ρ
Rk
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(7.9.15)

therefore

ζk =

fτk

ρ
Rk

iωgβkh
e−x/Rk . (7.9.16)

Recall for Mode 1 (barotropic or surface mode):

β1 =
h + h′

h
, a1 = 1, τ̄1 = τ1e

−iωt = τS
y = iτoe

−iωt (7.9.17)

then
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√
g h+h′

h
h√
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=

√
g(h + h′)√
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(7.9.18)

hence we have

ζ1 =
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ρ
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ωg(h + h′)
e−x/R1 (7.9.19)

For Mode 2 (baroclinic or internal mode):

β2 =
εh′

h + h′ , τ2 = iτ0

(−h′

h

)
(7.9.20)
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(7.9.21)
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Note, R2 = O
√

εR1 � R1.
Clearly

ζ2 = O

(
ζ1

ε

)
� ζ1 (7.9.22)

Recalling from (7.7.51) and (7.7.56) of the last section,

ζ̄1
∼= ζ, ζ̄2 = −h′

h
ζ +

h + h′

h
ζ ′ (7.9.23)

hence the free surface and interface displacments can be solved,

ζ ∼= ζ̄1 = �
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−iωt
}

= �
⎧⎨
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⎫⎬
⎭ (7.9.24)
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Very close to the coast, x/R2 = O(1), the internal wave mode dominates.

ζ ′ ≈ hζ̄2
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−h′
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= − h′
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ρ
f
ω
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e−x/R2 cos ωt (7.9.26)

Thus as the wind stress is from south to north, 0 < ωt < π, the interface rises fro its
lowest (negative) to the highest (positive) level; this is upwelling. As the wind reverses
direction and blows southward, the interfaces sinks; this is downwelling. For τ0 = 0.1Pa,
the upwelling can be several meters.

Farther away from the coast, x/R1 = O(1), the barotropic (surface wave) mode domi-
nates.

ζ ′ =
h′
h
ζ̄1

h+h′
h

=
h′

h + h′ ζ̄1 =

fτo

ρ
R1

ωg(h + h′)
e−x/R1 cos ωt. (7.9.27)

The free surface and the inteface rises together when the wind blows northward, and falls
together when the wind blows southward. See sketch in Figure 7.9.2.
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Figure 7.9.2: Possible scenarios of coastal upwelling. From Cushman-Roisin.


