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7.5 Cyclonic current forced by a swirling wind

Of practical interest is the case of nonuniform wind stress on the surface. As an extremely
simplified model we consider a vortical wind stress over a large sea'. See Figure 7.5.1.

Figure 7.5.1: Steady cyclonic flow in a shallow sea forced by swirling wind

Let us restricting to a low Rossby number flow for simplicity. Continuity requires:
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The momentum equations are
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L Acheson demonstrated a very similar problem of a circular layer of water bounded above and below by
two horizontal planes. While the bottom plane rotates about the vertical axis at the rate {2 the top cover
rotates steadily at a different rate (1 4 €)2.



The boundary conditions are : no slip on the bottom:
u=v=w=0, 2z=0 (7.5.5)
and given wind stress on the top:
o =pTr/2, 75=0, z=H. (7.5.6)

The wind stress is cyclonic, where T is the curl of the wind sress vector:
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In cartesian coordinates the wind stress components are:
T T
75 = —1) sinf = L sing = —p—y, (7.5.8)
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Kinematically we assume that
w=0, z=H. (7.5.10)
7.5.1 Inviscid core
Outside the surface an bottom boundary layers, we have
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This is clearly the state of geostrophyic balance. Momentum balence in the vertical direction
is trivial,
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Consequently u; and v; must be independent of z. in accordance with the Taylor-Proudman

theorem. Note that conservation of mass is automatically satisfied,
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The horizontal components u;(z,y), v;(z,y) are not determined yet. The vertical velocity
wy can at best be a contant in z.

and the vorticity is



7.5.2 Bottom boundary layer

Let us keep the dominant viscous stress terms in the momentum equations,

0? (u — uy)
— — = V——-= 7.5.13
flo—o) = v (7.513)
0P (v—w
flu—ur) = I/% (7.5.14)
The boundary conditions are
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where
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is the Ekman boundary layer thickness.
The solution is left to the reader as an exercise

u—u; = —e (u; coS g + vy sin %) (7.5.16)
v—v; = —e (vl cos g — Uy CoS g) ) (7.5.17)

From continuity, the vertical component can be computed. Let { = z/4,

ow 1 ow ou  Ov
> Y (22 5.1
5z 50C (8:70 + ay> (7.5.18)
- 81}1 8u1 —C 8UI 8'01 —¢
= (%_8—3/)6 smg—i—(%—l—a—y) (e COSC).
The second term vanishes, hence,
. ¢ 8'01 8u1 —C
w—é/o dC(&c 8y>e sin ¢
e ¢
= 0 (% - %_2;) 67 (—sin¢ — cos() 0
. (5 (%[ 8u1 —¢ .
= 3 <8x 8y> {1 e (cos(’—l—sm(’)}.
At the outer edge of the bottom boundary layer, ( = z/6 > 1
o ) (%[ 8u1 . )

where w; is the vorticity in the geostrophic interior. Thus there is vertical flux from the
bottom boundary layer when the interior flow is horizontally nonuniform; this is called the
Ekman pumping!

We still don’t know the geostrophic flow field.



7.5.3 Surface boundary layer

The momentum equations are
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On z = H the boundary conditions are
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Far beneath the surface
u—up, v—uv; (H—2)>0
Let us introduce the boundary-layer coordinate
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The solution satisfies the momentum equations and (7.5.22) is of the form

u—u; = e "(Acosn+ Bsin )
v—v; = e "(Bcosn— Asinn).

In order to satisfy (7.5.21), we first note that
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Applying (7.5.21), we get
v Ty v Tz
—5(-A+B)=-—, -5(-A-B)=—
with the results,
T TH
A=(e—y), B=_(z+y)
Hence the horizontal velocities are
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By continuity
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the vertrical velocity can be found,
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At the outer edge of the surface boundary layer n > 1
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By Taylor-Proudman theorem, w(z) = wp = wy. Therefore
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and the interior vorticity is
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What are u; and v;? In cylindrical polar coordinates
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which leads to



The interior flow is geostrophic and cyclonic.
In cartesian form we have

: T
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Now the radial component inside the bottom boundary layer is
Up = Uy — UJ,
since uy, = 0. The latter is
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and is negative in most of the boundary layer. Hence the flow spirals inward towards the
z axis in the bottom boundary layer. Similarly one can show that the flow in the surface
boundary layer has an outward radial component.

In summary, the swirling wind induces a vorticity T'/v in the geostrophic interior. The
flow in the bottom Ekman layer spirals inward, rises vertically at a uniform velocity while
spiralling at the angular velocity 7'/v and maintaining a constant vorticity in the geotrophic
interior, then spirals outward in the surface Ekman layer. The flow is therefore cyclonic.



