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7.2 Vorticity in inviscid rotating fluids
— Taylor -Proudman theorem

Ignoring viscosity, let ¢ = V x ¢ and use the identity
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The mommentum equation can be written :
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Taking the curl of the above equation:
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Using the identity
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we get
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The first term on the right vanishes because () = constant and the divergence of curl is zero;
the second vanishes for imcompressible fluids. Let (, = ¢ + 2{2 = absolute vorticity
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If the Rossby number is small (slow flow)
¢ = Rossby No. _ﬁ<<1
and if p = constant, then
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and
20-V7=0 (7.2.3)
Th eflow is two dimensional and does not vary along the rotation vector. Let € be parallel
to the z axis, then
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This has been proven edperimentally by Taylor, see sketch in Figure 7.2.1.

0 (7.2.4)

Theorem 1 Taylor-Proudman theorem : A steady and slow flow in a rotating fluid is two-
dimensional in the plane perpendicular to the vector of angular velocity.
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Figure T.2.1: Taylor's experiment showing the
Taylor column above a fruncated cylinder in a
rofating fluid. The large container with water
raofates but the cylinder is fixed in space.
(Adapfed from Kundu, Fiuid Mechanics, 1990).



