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7.2 Vorticity in inviscid rotating fluids

– Taylor -Proudman theorem

Ignoring viscosity, let �ζ = ∇× �q and use the identity

�ζ × �q = �q · ∇�q −∇|�q|2
2

The mommentum equation can be written :

∂�q

∂t
+ �ζ × �q + 2�Ω × �q = −∇p

ρ
+ ∇

(
φ − |�q|2

2

)
(7.2.1)

Taking the curl of the above equation:

∂�ζ

∂t
+ ∇×

(
(2�Ω + �ζ) × �q

)
=

∇ρ ×∇p

ρ2

Using the identity

∇×
(

�A × �B
)

= �A∇ · �B − �B∇ · �A + �B · ∇ �A − �A · ∇ �B

we get

∇×
{
(2�Ω + �ζ) × �q

}
= −�q∇ · (2�Ω + �ζ) + (2�Ω + �ζ)∇ · �q + �q · ∇(2�Ω + �ζ) − (2�Ω + �ζ) · ∇�q

The first term on the right vanishes because �Ω = constant and the divergence of curl is zero;
the second vanishes for imcompressible fluids. Let �ζa = �ζ + 2�Ω = absolute vorticity

D�ζ

Dt
=

∂�ζ

∂t
+ �q · ∇�ζ = �ζa · ∇�q +

∇ρ ×∇p

ρ2
(7.2.2)

If the Rossby number is small (slow flow)

ε = Rossby No. =
u

2ΩL
� 1

and if ρ = constant, then
ζ

2Ω
∼ u

2ΩL
� 1



2

and
2�Ω · ∇�q = 0 (7.2.3)

Th eflow is two dimensional and does not vary along the rotation vector. Let Ω be parallel
to the z axis, then

∂�q

∂z
= 0 (7.2.4)

This has been proven edperimentally by Taylor, see sketch in Figure 7.2.1.

Theorem 1 Taylor-Proudman theorem : A steady and slow flow in a rotating fluid is two-
dimensional in the plane perpendicular to the vector of angular velocity.


