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6.5 Geothermal Plume
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Consider a steady, two dimensional plume due to a source of intense heat in a porous

medium. From Darcy’s law:
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where k denotes the permeability, and
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These are the momentum equations for slow motion in porous medium. Mass conservation
requires
Uy +w, =0 (6.5.3)

Energy conservation requires
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denotes the thermal difusivity.
Equation of state:
p=po(l—pB(T-T)) (6.5.6)
Consider th flow induced by a strong heat source. Let
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where pq is the hydrostatic pressure satisfying
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Eqn. (6.5.2) can be written
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6.5.1 Boundary layer approximation

Eliminating p’ from Equns. (6.5.7) and (6.5.1), we get
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Let ¢ be the stream funciton such that
u=1;, w=-—1Y
then
VYow + sz = —gp;ﬁkT; (6.5.8)

For an intense heat source, we expect the plume to be narrow and tall. Let us apply the
boundary layer approximation and check its realm of validity later,
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which is the same as ignoring dp’/dz in Eqn. (6.5.7).
This can be confirmed since v < w 9p’/0x ~ 0, p’ inside the plume is the same as that
outside the plume. But
o'
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outside the plume, hence dp'/0z = 0 inside as well.
Applying the B.L. approximation to Eqn. (6.5.4)
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Using the continuity equation we get
(uwT)y + (WT"), = T},
Integrating across the plume,
0z
since T" = 0 outside the plume. It follows that
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6.5.2 Normalization

Let us take
WB _
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where H, B, AT and W are to be determined to get maximun simplicity. We then get from

the momentum equation,
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from the energy equation,
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and from the total flux condition,
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Let us choose
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which gives three relations among four scales, B, H, W, AT. Then
w = &i = _97

from the energy equation,
by + Wz = bz,

/ whdr =1

w(£oo, z) =0, 6O(+oo,z) =0

and from the total flux condition,

In addition we require that

ow(0, z)

u(0, 2) = e

=0, z=0.

From here on we omit overhead bars in all dimensionless equations for brevity.
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6.5.3 Similarity solution

Now let
r=X\2" 2=\ =2 6=\
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From Eqn. (6.5.17)

For invariance we require,

c—a=d. (6.5.22)
From (6.5.19)
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therefore,
a+d=0. (6.5.23)

From Eqn. (6.5.18)
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implying,
c+a—0b=0. (6.5.24)
Finally
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In view of these we introduce the following similarity variables,
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Note that at the center line n =0

w = —th, o< 22 f1(0)(=) 2P~ 2R F(0) v 27 (6.5.26)
0 o< 2~ /31(0) (6.5.27)

and
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Thus the velocity and temperature along the centerline decay as z~'/® and the plume width
grows as z%/%.
Substituting these into Eqns. (6.5.17) and (6.5.18), we get, after some algebra
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The boundary conditions are,
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Integrating Eqn. (6.5.30), we get
fh=3N.

Using Eqn. (6.5.29), we get
1 =3f"
Integrating again, we get
—6f = fg — f*
where fy = fmax. Let f = —foF, then
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which can be integrated to give
Thus
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Solving for F', we get
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What is fo? Let us use Eqn. (6.5.29)

since )
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Therefore,
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Since
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The solution is 13 1/3
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f= (§> tanh <§> g (6.5.33)
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Computed results are given in Figures.
RemarkChecking the boundary layer approximation.
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hence for large z, B. L. approximation is good.
6.5.4 Return to physcial coordinates
Start from _
z
W
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By eliminating H and AT from(6.5.35) and (6.5.37), we get
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Figure 6.5.1: Theoretical solution for a geothermal plume
due fo Yih.
(Adapted from Yih, Dynamics of Nonhomogeneous Fluids, 1965).

From (6.5.36), we get
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It follows that
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Now
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It can be shown that
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which depends on the fluid properties and the given heat source strength.

Also
730 = h(n) = (H2)"PATT” = (HY3AT) 23T

We can show that
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which also depends on the fluid properties and the given heat source strength.
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which also depends on the fluid properties and the given heat source strength.




