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6.3 Saffman-Taylor instability in porous layer- Viscous
fingering

Refs:
P. G. Saffman & G. I. Taylor, 1958, The penetration of a fluid into a porous medium or
Hele-Shaw cell containing a more visous fluid. Proc. Royal Society, 245, 312-329.

G. Homsy; 1987. Viscous fingering in porous media. Annual Rev of Fluid Mech. 19, 271
- 314.

In petroleum recovery water is often used to drive oil from the reservoir. An oil reservoir
can also be covered by a layer of water from above. Phenomenon of fingering often occurs
when oil is extracted frome beneath the water layer. Although known to mining engineers,
Saffman & Taylor (1958) gave the first theory and performed simulated experiments in a
Hele-Shaw cell.

Consider a moving interface in a stationary coordinate system. Let the initial seepage
velocity V' be vertical and the interface be a plane, then
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where n is the porosity. If the interface is disturbed then its position is at
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At any interior point, ¢ is the velocity potential,
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where k is the permeability related to conductivity K by
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The pressure is
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Thus in fluid 1(upper fluid)
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By continuity,
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In the lower fluid (2),
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Let us first examine the basic uniform flow where the interface is plane (n = 0). The
potentials are
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Note that an arbitrary function of f(t) is added to the potential without affecting the velocity
field. The pressures are
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and in the lower fluid (2),
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In order that pressure is continuous at y = Vt/n for all ¢, we must have
filt) = Fit, folt) = Fat (6.3.14)

where F, F5 are constants and

Vv Vv F V Vv F
B M1—+p1g Vo 1 M2__|_p29 _+M22
n ky ko n ko

Thus

]{72 kl n k2 kl

Note that it is only the difference that matters.
We now consider a small disturbance on the interface .
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where

is small. The total solution is
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The linearized kinematic boundary condition is that velocities must be continuous.
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Now we require continuity of pressure on y = Vit/n + 7,
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Eliminating n we get
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Clearly iw is real. If iw > 0, or
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the flow is stable. If iw < 0, or
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the flow is unstable.
From the simple model of a tubular porous medum,
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is independent of viscosity and depends only on n and the pore size. Assume therefore
ki1 = ko and that oil (lighter more viscous) lies above water p; < py and py > po. If V< 0
(water pushed downward by oil ) then the flow is always stable. Consider V' > 0. The flow
is unstable if
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Too high an extraction rate causes instability which marks the onset of fingers.

If the water layer is on top of the oil layer, then py — p; < 0; the flow is unstable even if
V = 0. Since po/ky — p1/k1 > 0 a downward flow (water toward oil) is always unstable. A
upward flow can be unstable if
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Note also that the growth(decay) rate is higher for shorter waves.
A gallary of beautiful photographs of fingering taken fromn Hele-Shaw erperiments can
be found in the survey by Homsy.





