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CHAPTER 6.

SEEPAGE AND THERMAL EFFECTS
IN POROUS MEDIA

6-1darcy-EM.tex
Applications : Groundwater flow and transport, building insulation, energy storage and re-
covery, geothermal reservoirs, nuclear waste disposal,etc.

6.1 Empirical basis of Darcy’s law for seepage flow

[References]:
Polubarinova-Kochina: Theory of Groundwater Movement, Princeton University Press
The basis of Darcy’s law for a non-deformable medium is the one dimensional experiment

by Darcy, see Figure 6.1.1.

Figure 6.1.1: Darcy’s experiment for seepage flow

The discharge through the tube is measured to be

Q = KA
H1 −H2

∆s
(6.1.1)
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Figure 6.1.2: A one dimensional model of porous medium

where

H1 =
P1

ρg
+ y1 H2 =

P2

ρg
+ y2

and K is an empircal coefficient called the hydraulic conductivity. The effective (seepage, or
filtration) velocity is defined to be the discharge per unit gross area of the porous medium

ū =
Q

A
= −K

H2 −H1

∆s
(6.1.2)

Let us define the potential to be

φ = −K

(

p

ρg
+ y

)

= −KH (6.1.3)

then

φi = −K

(

pi

ρg
+ yi

)

= −KHi, i = 1, 2, (6.1.4)

In the limit of ∆s→ 0, we get

ū = −K
∂H

∂s
=
∂φ

∂s
(6.1.5)

This is Darcy’s empirical law relating the seepage velocity to the hydraulic heads, both are
macro-scale averaged quantities.

What affect the conductivity? Let the porosity n be defined as the percentage of pore
volume in the gross volume V . If Vs is the volume occupied by solid grains in V , then

n =
V − Vs

V
(6.1.6)

If the pores are satuarated with fluid then Vf = V − Vs and n = Vf/V .
Consider the idealized porous medium consisting of parallel tubes, Figure 6.1.2. In a

cross-section of area A, the net area of pores is nA. The net averaged velocity is

ūP =
Q

nA
=
ū

n
(6.1.7)
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For a laminar flow through a circular tube, the discharge is

Q = −
πR4

8µ∆s
(∆p+ ∆y · ρg)

(Homework). The averaged velocity in the pore (tube) is

ūP =
Q

πR2
= −

R2g

8ν

(∆p/ρg + ∆y)

∆s

The seepage velocity through the matrix is

n ūP = −
nR2g

8ν

(∆p/ρg + ∆y)

∆s
(6.1.8)

Therefore, the hydraulic conductivity is

K =
nR2g

8ν
(6.1.9)

with the dimension

[K] =
L

T
(6.1.10)

The real pores are, of course, geometrically more complex, but the preceding formula indi-
cates that K is small for small pores and for high viscosity.

Darcy’s law is also often expressed in the form,

ū = −
k

µ
(p+ ρgy) (6.1.11)

where k is called the (intrinsic) permeability. Clearly

k =
µK

ρg
(6.1.12)

For the tubular model we have

k =
nR2

8
(6.1.13)

which is independent of viscosity.
From experiments, Kozeny and Carman proposed the following (empirical) formula

k = cd2
n3

(1 − n)2
(6.1.14)

where c = 0.1 ∼ 0.8, and d is the effective pore diameter defined as the ratio of the volume
of solids to the wetted area in the gross volume.
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Materials Hydraulic Conductivity K(m/sec)
Clays < 10−9

Sandy clays 10−9
− 10−8

Peat 10−9
− 10−7

Silt 10−8
− 10−7

Very fine sands 10−6
− 10−5

Fine sands 10−5
− 10−4

Coarse sands 10−4
− 10−3

Sand with gravel 10−3
− 10−2

Gravels > 10−2

Table 6.1: The order of magnitude of the conductivity of natural soils

Three-dimensional Darcy law; As a generalization

ūi = −Kij

∂H

∂xj

= −
kij

µ

∂(p+ ρgy)

∂xj

(6.1.15)

where Kij denotes the conductivity tensor and kij the permeability tensor. For an macro-
scopically isotropic material

Kij = Kδij, kij = kδij (6.1.16)

Continuity requires that

∇ · ~̄u = 0 (6.1.17)

Thus
∂

∂xi

(

Kij

∂H

∂xj

)

= 0 (6.1.18)

in general, and

∇ ·K∇φ = 0 (6.1.19)

for isotropic media. If further, the material is homogeneous : K = constant. then

∇
2φ = 0 (6.1.20)

Hence, for a nondeformable isotropic and homogeneous porous medium, the flow is potential.
In most soils the pore flow is usually laminar. Take the typical values : u = 0.25cm/sec, d ∼

0.4 mm , then

Re =
uD

ν
=

0.01cm2/sec

0.01 cm2/sec
= 0.1.

It is known empirically that for Re < 1 ∼ 15, the flow is usually laminar.
Boundary conditions of a typical seepage problem. Consder an earth dam:
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On the soil water interface y = H1(x) AB:

p = pa + ρg (H1 − y)

φ = −K

(

p

ρg
+ y

)

= −K

(

pa

ρg
+H1 − y + y

)

= −K

(

pa

ρg
+H1

)

= constant

Therefore,
φ = constant, y = H1(x). (6.1.21)

On the phreatic surface AE, where y = Y (x) is unknown a priori. The dynamic condition is
p = constant. Therefore,

φ+KY (x) = constant, y = Y (x) (6.1.22)

In addition, we have the kinematic condition, that y = Y (x) is a streamline :

ψ = constant, y = Y (x) (6.1.23)

On the seepage surface ED:

p = φ+Ky = constant = pa, y = H2(x) (6.1.24)

where H2(x) is known. Note that just inside the soil, the fluid velocity is not tangential to
ED.

On the impervious boundary (rock or saturated fine clay, etc.), BF:

ψ = constant (6.1.25)

Because the phreatic surface is unknown, the boundary-value problem in the earth dam
is highly nonlinear and difficult.

The prediction of the phreatic surface is useful for the design of the dam thickness and
of the size and location of the drainage ditch. To find the stresses in the dam and on the
foundation, one should consider the deformation of soil; this requires soil mechanics.
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Figure 6.1.3: A one dimensional model of porous medium


