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5.2 Kelvin-Helmholz Instability for continuous shear
and stratification

5.2.1 Heuristic reasoning

Due to viscosity, shear flow exists along the boundary of a jet, a wake or a plume . On the
interface of salt and fresh water, density stratification further comes into play. When will

dynamic instability occur?
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Figure 5.2.1: Exchanging fluid parcels in a stratified shear flow

Refering to Figure 5.2.1, Consider two fluid parcels, each of unit volume, at levels z and
z+dz. Let their positions be interchanged. To overcome gravity, the force needed to lift the
heavier fluid parcel by 7 is

917(2) 7=+ )] = ~gLn.

Work needed to lift the heavier parcel by dz is
dﬁ z+dz 1
—g— dn = —=dpdz.
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Similarly, the work needed to push the light parcel down by dz is —% gdpdz. Therefore the
total work needed is
—gdpdz.

Before the exchange, the total kinetic energy is

S0 + (U + dvy)



where Boussinesq approximation is used. After the exchange, the parcels mix with the
surrounding fluid and attain the average velocity

(U+U+dU)/2=U+dU/2
Therefore the total kinetic energy is
p(U +dU/2)?

The available kinetic energy is the difference between the kinetic energies before and after
the exchange.

g (U + (U +dU)? —2(U +dU/2)?} = ZdU?
If the net available kinetic energy exceeds the work needed for the exchange, the disturbance
will grow and the flow will become unstable, i.e.,
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Let the Richardson number be defined by

SIS
S

R;

(5.2.1)

N
<9
&
N———
[N}

Instabilty occurs if
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(Chandrasekar, 1961 ).
Remark: A slightly more accurate estimate can be made without Boussinesq approxima-
tion. Before the exchange, the total kinetic energy is

1
5 (AU + (7 + dp) (U + dU)*}.
After the exchange, the parcels mix with the surrounding fluid and attain the average velocity

(U+U+dU)/2="U +dU/2

but their densities are preserved. Therefore the total kinetic energy is
1
5(P+p+dp)(U + dU/2)*

The available kinetic energy is the difference between the kinetic energies before and after
the exchange.
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Ignoring the last term, the necessary condition for instability is
P o S -
ZdU — UdUdp + dedU > —gdpdz

or dp dp

AU

1L dU - 2

oow 4 (4

On the left-hand side, the third term is negligible compared to the first. The ratioi of the

second term on the left to the term on the right is

Dl

where L is the length scale of stratification. As long as the last ratio is very small, the
criterion R; < 1/4 still holds.
Let us confirm the heuristic result but the linearize theory.

5.2.2 Linearized instability theory for continuous shear and strat-
ification.
Let the total flow field be (U 4w, w, P+p, p+p) where U, P, p represent the backgraound flow

(u,w, p, p) the dynamical perturbations of infinitesimal magnitude. The linearized governing
equations are: continuity:

Uy +w, =0 (5.2.3)
incompressiblity:
pr+ Upy +wp =0 (5.2.4)
where _
— @
- dz
and momentum conservation:
p(uy + Uuy +wU,) = —p, (5.2.5)
Iz (wt + Uwz) = —D. — Pg. (526)
where p denotes the perturbation of density from p.
Let us follow Miles and introduce a new unknown 7 by enoting p = —p'n, then Eqn.
(5.2.4) gives
ne+Un, =w (5.2.7)

Consider
n = F(z)e*@=, (5.2.8)



where

c=w/k=c, +ic.

For fixed k the flow is unstable if ¢; > 0, since

e—ikct — e—ikcrtekcit'
Let
{u,w,p, p} = {a(2),9(2), (=), =p'F ()} = (5.2.9)
We get from Eqn. (5.2.7)
W= ik(U — ¢)F,, (5.2.10)
from Eqn. (5.2.3)
u=—[U-c¢)FY, (5.2.11)

and from Eqn. (5.2.5)
p (ik(U — c)u+ U'[ik(U — ¢)F)) = pik

or

plU = ) (U = ) F]' + U(U = o) F] = p,

hence
p=pU —c)’F'. (5.2.12)

Substituting Eqns. (5.2.9), (5.2.10), (5.2.11) and (5.2.12) into Eqn. (5.2.6), we get
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PU =) F'| +5 [N = k(U = 0)?| F =0, (5.2.13)
where N is the Brunt-Vaisala frequency defined by
nN2— 9% (5.2.14)
Let the top and bottom be rigid walls, then w = 0. Hence,
n=0 ie, F=0, z2=0,d. (5.2.15)

The argument is unchanged if the top and bottom are at z = co and z = —oco. Equations
(5.2.13) and (5.2.15) consititute an eigenvalue problem where ¢ = ¢, + ic; is the eigenvalue.
If ¢; > 0, instability occurs.



5.2.3 A necessary condition for instability (J.W. Miles, L. N.
Howard).

For brevity we set W = U — ¢. Miles further introduce G = VW F, so that Eqn. (5.2.13)
becomes

FWEY — E (@U") + KW+ L GU’? - N?)] G =0 (5.2.16)

The boundary conditions are
G(0) =G(d) = 0. (5.2.17)

Multiplying Eqn. (5.2.16) by G* and integrating by parts

w(a e )+ teuy e (tor - v Ywe S pla o
Lo (16512 121G+ 5 (U7 16 45 (U7 = N*) W | o P dz =0,

(5.2.18)
We now seek the necessary condition for instability, i.e., ¢; # 0. Writing
W = (U —c¢,) — ic W*=(U —¢,) + ic
and substituting these in (5.2.18), we get
d
[ = —icy (|G P 4421 G )
0
1 —77\/ 2 — 1 12 2) . G 2}
- “U?_ N _ )| — =0.
+2 (U |G +p(4U U e +ie) | o P} dz =0
Separating the imaginary part, we get, if ¢; # 0,
d d 1 G
_ 112 1.2 2 - "2 2 7 _
[o(16E+#1G P dz+ [5(99 - 10)2) | 2 P dz =0
For this to be true it is necessary that N? < $(U’)? or
N? gd—ﬁ 1
R = =l (5.2.19)
to(U)? 27
W ()

This confirms the heurisic result as the necessary (but not sufficient) condition for instabililty

(J.W. Miles, L. N. Howard).



