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−−−−−−−−−−−−−−−−−−−
Various factors can be crucial to hydrodynamic instability.: shear, gravity, surface tension,
heat, centrifugal force, etc. Some instabilities lead to a different flow; some to turbulence.

We only discuss the linearized analysis of instability of a few sample problems. More
examples will be discussed in later chapters.

Let us take the parallel flow as the example and outline the standard procedure of lin-
earized analysis as follows:

1. Assume the flow domain to be of infinite extent in the x direction. Let the basic flow
have velocity U(z) in the x direction.

2. Derive the linearized equation for infinitestimal perturbations and homogeneous bound-
ary conditions.

3. Consider sinusoidal wave- like disturbances so that all unknowns are of the form

fi = f̄i(y, z) ei(kx−ωt)

4. Deduce the partial differential equation(s) in the transverse plane (y, z) and obtain an
eignevalue problem.

5. Solve for the eigenvalue ω for given real k.

6. If the eigenvalue is complex, ω = ωr + iωi, find the condition under which ωi > 0. Since

e−iωt = e−i(ωr+iωi)t = e−iωrteωit,

the flow is unstable ωi > 0 as time grows, stable if ωi < 0, and neutrally stable if
ωi = 0.



2

5.1 Kelvin-Helmholtz instability of flow with discon-

tinuous shear and stratification.

5.1.1 Nonlinear formulation

Consider two immiscible fluids. The upper (z > 0) and lower (z < 0) fluids have different
densities ρ1 and ρ2. Before any perturbations appear the lower fluid is stationary, while the
upper fluid moves at the steady and uniform velocity q̄o = U~i. With gravity, this is called
the Kelvin-Helmholtz instability problem. For the time being, let us assume that there is no
gravity.

Now let there be a disturbance on the interface whose vertical displacement is z = ζ(x, t).
The corresponding disturbances of velocity and pressure are ~q1 and p1 in the upper fluid and
~q2 and p2 in the lower fluid.

Let us first formulate the nonlinear problem. In the upper fluid, we have

~q1 = ∇Φ1, and ∇2Φ1 = 0, z > 0 (5.1.1)

and the Bernoulli equation,

∂Φ1

∂t
+

(∇2Φ1)
2

2
= −p1

ρ1
+ C1 (5.1.2)

In the lower fluid, we have :

~q2 = ∇Φ2, and ∇2Φ2 = 0 z < 0 (5.1.3)

with the Bernoulli equation,

∂Φ2

∂t
+

(∇2Φ2)
2

2
= −p2

ρ2
+ C2 (5.1.4)

On the interface F = z − ζ(x, t) = 0 the kinematic conditions are

∂F

∂t
+ ∇Φ1 · ∇F = 0 (5.1.5)

and
∂F

∂t
+ ∇Φ2 · ∇F = 0 (5.1.6)

or, more explicitly,
∂ζ

∂t
+

∂Φ1

∂x

∂ζ

∂x
=

∂Φ1

∂z
, z = ζ, (5.1.7)

∂ζ

∂t
+

∂Φ2

∂x

∂ζ

∂x
=

∂Φ2

∂z
, z = ζ, (5.1.8)

The dynamic condition is
p1 = p2, or z = ζ. (5.1.9)
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ρ1

(

∂Φ1

∂t
+

(∇2Φ1)
2

2
− C1

)

= ρ2

(

∂Φ2

∂t
+

(∇2Φ2)
2

2
− C2

)

, or z = ζ. (5.1.10)

Far away from the interface,

∇Φ1 → U1
~i, z → ∞, (5.1.11)

∇Φ2 → U2
~i, z → −∞. (5.1.12)

Note that in the absence of any transient disturbances, ∇Φ1 = U1
~i,∇Φ2 = U2

~i, so that

ρ1

(

C1 −
U2

1

2

)

= ρ2

(

C2 −
U2

2

2

)

(5.1.13)

5.1.2 Linearization

We now limit ourselves to infinitesimal disturbances. Specificlly, the interface displacement
is infinitesimal when compared to other length scales.

Φ1 = U1x + φ1, and Φ2 = U2x + φ2, (5.1.14)

with φn � Φn, n = 1, 2 and linearize all the conditions. We then get

∇2Φ1 = 0, z > 0, (5.1.15)

nad

∇2Φ2 = 0, z < 0, (5.1.16)

Note that

f(x, ζ, t) = f(x, 0, t) + ζ
∂f

∂z
|z=0 + · · · , (5.1.17)

On the inteface we have ther kinematic conditions

∂ζ

∂t
+ U1

∂ζ

∂x
=

∂φ1

∂z
, z = 0, (5.1.18)

∂ζ

∂t
+ U2

∂ζ

∂x
=

∂φ2

∂z
, z = 0, (5.1.19)

and the dynamic condition

ρ1

(

∂φ1

∂t
+ U1

∂φ1

∂x

)

= ρ2

(

∂φ2

∂t
+ U2

∂φ2

∂x

)

, z = 0. (5.1.20)

where (5.1.13) has been used.
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5.1.3 Normal mode analysis

Assume a sinusoidal disturbance

ζ = Aei(kx−ωt) (5.1.21)

We follow the usual convention that the real part of the final solution is to be taken to
represent physical quaitities. To satisfy Laplace equation we take

φ1 = φ̄1 e−kzei(kx−ωt) (5.1.22)

φ2 = φ̄2 ekzei(kx−ωt) (5.1.23)

Here A, φ̄1, φ̄2 are unknown constants.

Substituting into boundary conditions on the interface eqs (5.1.18-5.1.20) we get three
homogeneous alegebric equations for A, φ̄1, φ̄2,

(−iω + ikU1)A = −kφ̄1 (5.1.24)

(−iω + ikU2)A = kφ̄2 (5.1.25)

ρ1(−iω + ikU1)φ1 = ρ2(−iω + ikU2)φ2

which can be written in matrix form







−iω + ikU1 k 0
−iω + ikU2 0 −k

0 ρ1(−iω + ikU1) −ρ2(−iω + ikU2)

















A
φ̄1

φ̄2











= 0

In order to get non trivial solutions the coefficient determinant of the algebraic equations
must vanish, leading to the eigenvalue condition

ρ1(−ω + kU1)
2 + ρ2(−ω + kU2)

2 = 0

or

(ρ1 + ρ2)ω
2 − 2k(ρ1U1 + ρ2U2)ω + k2(ρ1U

2
1 + Uρ2U

2
2 ) = 0

The solution is

ω = k
ρ1U1 + ρ2U2

ρ1 + ρ2

± ik

√
ρ1ρ2|U1 − U2|

ρ1 + ρ2

(5.1.26)

The lower sign corresponds to instability. Thus a velocity discontinuity is always unstable.
This is the limiting case of the continuous velocity profile with a point of inflection.
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5.1.4 Physical interpretation

Let us use the mathematical results to see the physics ( Batchelor, p 516ff). For simlicity
we choose ρ1 = ρ2 = ρ and U1 = −U2 = U > 0 so that (5.1.26) reduces to

ω = ±ikU (5.1.27)

and is purely imaginary. The positive root (upper sign) signifies instability.
The basic flow has a vortex sheet at z = 0. Due to the disturbance, the vorticity

distribution is changed. Across the interface the total vorticity is approximately

∫ 0+

0
−

∂u′

∂z
dz = u′

1(z = 0+) − u′

2(z = 0−) =
∂φ1

∂x
|0 −

∂φ2

∂x
|0

Note that a positive vorticity vector points into the paper (as does the y axis); the circulation
is clockwise in the x − z plane. From the solution (5.1.24) and (5.1.25) we get

∂φ1

∂x
|0 = ikφ̄1e

ikx−iωt = −i(−iω + ikU1)Aeikx−iωt = −i(−iω + ikU1)ζ

and
∂φ2

∂x
|0 = ikφ̄2e

ikx−iωt = i(−iω + ikU2)Aeikx−iωt = i(−iω + ikU2)ζ

Therefore the vorticity along the interface is

[−2ω + k(U1 + U2)]ζ = ∓2ikUζ = 2kUA exp(ikx ∓ iπ/2) ± kUt)

Consider only the upper signs for the unstable solution,

−2ikUζ = 2kUA exp
[

ik
(

x − π

2k

)

+ kUt
]

= 2kUA exp

[

ik

(

x − λ

4

)

+ kUt

]

since k = 2π/λ where λ is th wave length. In real form the vorticity disturbance varies as

2kUA cos

[

k

(

x − λ

4

)]

ekUt

whereas the interface varies as
A cos kx ekUt

The vorticity disturbance varies along the interface and leads the interface displacement ζ
in phase by π/2 or one quarter of a wavelength. As sketched in the upper part of Figure
5.1.1, the vorticity disturbance is at the positive (clockwise) maximum at points like A where
ζ = 0 and ζx < 0 and at the negative (counterclockwise) maximum at points like B where
ζ = 0 and ζx > 0, being zero at the crests and troughs of the interface. All these vortices
tend to lift the interface crests and supress the troughs.
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Figure 5.1.1: Disturbance vorticity along a velocity dicontinuity. U1 = U > 0, U2 = −U < 0.

Moreover the disturbances are convected by the average velocity

∂φ1

∂x
|0 +

∂φ2

∂x
|0 = k(U1 − U2)ζ = 2Uζ

which is positive near the crests and negative near the troughs. Therefore clockwise vorticity
disturbances accumulate around A, while the counterclockwise disturbances are swept away
from and thinned out around B. Because of this assymetry the wavy interface not only tend
to amplify but to curl up in the forward direction as sketched in the lower part of Figure
5.1.1.

After some time the disturbance grows so large that nonlinearity must be accounted for.
Numerical nonlinear analysis as well as laboratory experiments show that the interface curls
up.
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Homework K-H instability: Show that when gravity and surface tension are both
present, the eigenvalue condition is

ω

k
=

ρ1U1 + ρ2U2

ρ1 + ρ2
±
[

−ρ1ρ2(U1 − U2)
2

(ρ1 + ρ2)2
+

g

k

ρ2 − ρ1

ρ1 + ρ2
+

Tk

ρ1 + ρ2

]1/2

(5.1.28)

Discuss the condition for instability.
Remark: The special case of U1 = U2 = 0 but g 6= 0, i.e., the instability of normally

accelerated density discontinuity, is called the Rayleigh-Taylor instability. It is of interest
when an interface is acelerated in the normal direction, and has a wide range of industrial
and astrophysical applcations.

Remark: The K-H instabilty problem can be generalized in a number of ways, by
including viscosity and continuous density and/or velocity profiles, see Chandrasekhar.


