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4.7 Dispersion in an oscillatory shear flow

Relevant to the convective diffusion of salt and/or pollutants in a tidal channel, and chemicals
in a blood vessel, Let us examine the Taylor dispersion in an oscillating flow in a pipe. Let
the velocity profile be given,

u="U(r)+R [Uw(fr)e*i“’t} , 0<r<a. (4.7.1)
The transport equation for the concentration of a solvent is recalled
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Assume the pipe to be so small that diffusion affects the whole radius within one period or
S0, 1.e.,
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We shall be interested in longitudinal diffusion across L much greater than a. Let U, be the

scale of U and
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Equation (4.7.2) is nomalized to
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For brevity we drop the primes from now on.



4.7.1 Multiple scale analysis-homogenization

For convenience let us repeat the perturbation arguments of the last section.
There are three time scales : diffusion time across a, convection time across L, and
diffusion time across L. Their ratios are :
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the smallest time scale being comparable to the oscillation period. Upon introducing the
multiple time coordinates

t,t =et, ty = €t (4.7.10)
and the multiple scale expansions.
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where C; = C;(x,r,t,11,t3), then the perturbation problems are
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Ignoring the transient that dies out quickly and focusing attention to the long-time
evolution, i.e., t; = O(1), the solution at O(e") is !

C() = CQ(ZL‘, tl, tg), (4718)

1Strictly speaking the solution is
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where k7, is the n—th root of Jj(ka) = 0. The series terms die out quicly in ¢ > 1 and ¢; < 1, leaving the
limit Coo which is independent of ¢. (Dr. E. Qian,1993)



At O(e), let the known velocity be

u=U(y) + R (Un(y)e ™) (4.7.19)
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Denoting the period average by overbars,
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and taking the period average,
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Let us now integrate (or average ) across the pipe, and get
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where angle brackets denote averaging over the cross section.
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Now subtract (4.7.23) from (4.7.20)
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is the velocity nonuniformity
Now ('} is governed by a linear equation, we can assume the solution to be proportional
to the forcing and composed of a steady part and a time harmonic part, i.e.,
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then
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After solving for By, B, we go to O(€?), i.e., (4.7.16) :
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which is a linear PDE for Cy. From(4.7.26) and (4.7.23) we find
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Taking the time average over a period,
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Averaging (4.7.33) across the pipe, we get
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which is the effective diffusion coefficient or the dispersion coefficient. The first part is of
molecular origin; the second part is due to fluid shear.
Finally we add (4.7.23) and (4.7.35) to get:
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This describes the convective diffusion of the area averaged concentration, which is cer-
tainly of practical value.

After the perturbation analysis is complete, there is no need to use multiple scales; we
may now write
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still in dimensionless form. This equation governs the convective diffusion of the cross-
sectional average, after the initial transient is smoothed out.
Homework: Find the dispersion coefficient E in the oscillatory flow in a circular pipe
and carry out the necesary numerical calculations.
Homework (mini research) : Find the dispersion coefficient E in the oscillatory flow in

a blood vessel with elastic wall.
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