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4.7 Dispersion in an oscillatory shear flow

Relevant to the convective diffusion of salt and/or pollutants in a tidal channel, and chemicals
in a blood vessel, Let us examine the Taylor dispersion in an oscillating flow in a pipe. Let
the velocity profile be given,

u = Us(r) + <
[

Uw(r)e−iωt
]

, 0 < r < a. (4.7.1)

The transport equation for the concentration of a solvent is recalled
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(4.7.2)

Assume the pipe to be so small that diffusion affects the whole radius within one period or
so, i.e.,

τo ∼
2π

ω
∼

a2

D
(4.7.3)

We shall be interested in longitudinal diffusion across L much greater than a. Let Uo be the
scale of U and

x = Lx′, r = ar′, u = Uou
′, t =

a2

D
t′, Ω =

ωa2

D
(4.7.4)

Equation (4.7.2) is nomalized to
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(4.7.5)

Let the Péclét number Pe = Ua/D = O(a/L)0 be of (4.7.5) becomes
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∂t′
+ εPe

∂(u′C ′)

∂x′
= ε2∂2C ′

∂x′2
+

1

r

∂

∂r′

(

r′
∂C ′

∂r′

)

(4.7.6)

with the boundary conditons
∂C ′

∂r′
= 0, r′ = 0, 1 (4.7.7)

with
u′ = U ′

s + <U ′

we−iΩt′ (4.7.8)

For brevity we drop the primes from now on.
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4.7.1 Multiple scale analysis-homogenization

For convenience let us repeat the perturbation arguments of the last section.
There are three time scales : diffusion time across a, convection time across L, and

diffusion time across L. Their ratios are :

a2

D
:

L

Uo

:
L2

D
= 1 :

1

ε
:

1

ε2
, (4.7.9)

the smallest time scale being comparable to the oscillation period. Upon introducing the
multiple time coordinates

t, t1 = εt, t2 = ε2t (4.7.10)

and the multiple scale expansions.

C = C0 + εC1 + ε2C2 + . . . . (4.7.11)

where Ci = Ci(x, r, t, t1, t2), then the perturbation problems are
O(ε0):
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(4.7.12)

with the boundary conditions:
∂C0

∂r
= 0, r = 0, 1. (4.7.13)

O(ε):
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(4.7.14)

with:
∂C1

∂r
= 0, r = 0, 1. (4.7.15)
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(4.7.16)

with
∂C2

∂r
= 0, r = 0, 1. (4.7.17)

Ignoring the transient that dies out quickly and focusing attention to the long-time
evolution, i.e., t1 = O(1), the solution at O(ε0) is 1

C0 = C0(x, t1, t2), (4.7.18)

1Strictly speaking the solution is

C0 = C00(x, t1, t2) +

∞
∑

0

C0n(x, t1, t2)e
−(k′

n
)2tJ0(k

′

nr)

where k′

n is the n−th root of J ′

0(ka) = 0. The series terms die out quicly in t � 1 and t1 � 1 , leaving the
limit C00 which is independent of t. (Dr. E. Qian,1993)
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At O(ε), let the known velocity be

u = Us(y) + <
(

Uw(y)e−iΩt
)

(4.7.19)

then
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(4.7.20)

Denoting the period average by overbars,

f̄ =
Ω

2π

∫ t+2π/Ω

t
f dt

and taking the period average,
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)

(4.7.21)

with
∂C̄1

∂r
= 0, r = 0, 1 (4.7.22)

Let us now integrate (or average ) across the pipe, and get

∂C0

∂t1
+ Pe〈Us〉

∂C0

∂x
= 0 (4.7.23)

where angle brackets denote averaging over the cross section.

〈h〉 =
1

π

∫ 1

0

2πrh dr

Now subtract (4.7.23) from (4.7.20)
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(4.7.24)

where
Ũ = Us(y) − 〈Us〉 (4.7.25)

is the velocity nonuniformity
Now C1 is governed by a linear equation, we can assume the solution to be proportional

to the forcing and composed of a steady part and a time harmonic part, i.e.,

C1 = Pe
∂C0

∂x

{

Bs(r) + <
[

Bw(r)e−iΩt
]}

(4.7.26)

then
1

r

d

dr

(

r
dBs

dr

)

= Ũ(r) (4.7.27)
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and
1

r

d

dr

(

r
dBw

dr

)

+ iΩBw = Uw(r) (4.7.28)

with the boundary conditions

dBs

dr
= 0 and

dBw

dr
= 0, r = 0, 1. (4.7.29)

After solving for Bs, Bw we go to O(ε2), i.e., (4.7.16) :
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)

(4.7.30)

which is a linear PDE for C2. From(4.7.26) and (4.7.23) we find

∂C1

∂t1
= −Pe2
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∂x2
〈Us〉

{
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(4.7.31)

It follows that
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(4.7.32)

Taking the time average over a period,

∂C0

∂t2
+ Pe2

{

ŨsBs +
1

2
< [UwB∗

w]
}
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r
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(4.7.33)

with
∂C̄2

∂r
= 0 r = 0, 1 (4.7.34)

Averaging (4.7.33) across the pipe, we get

∂C0

∂t2
= E

∂2C0

∂x2
(4.7.35)

with

E = 1 − Pe2

{

〈ŨsBs〉 +
1

2
<〈UwB∗

w〉
}

(4.7.36)
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which is the effective diffusion coefficient or the dispersion coefficient. The first part is of
molecular origin; the second part is due to fluid shear.

Finally we add (4.7.23) and (4.7.35) to get:

(

∂

∂t1
+ ε

∂

∂t2

)

C0 + Pe〈Us〉
∂C0

∂x
= εE

∂2C0

∂x2
(4.7.37)

This describes the convective diffusion of the area averaged concentration, which is cer-
tainly of practical value.

After the perturbation analysis is complete, there is no need to use multiple scales; we
may now write

∂C0

∂t1
+ Pe〈Us〉

∂C0

∂x
= εE

∂2C0

∂x2
(4.7.38)

still in dimensionless form. This equation governs the convective diffusion of the cross-
sectional average, after the initial transient is smoothed out.

Homework: Find the dispersion coefficient E in the oscillatory flow in a circular pipe
and carry out the necesary numerical calculations.
Homework (mini research) : Find the dispersion coefficient E in the oscillatory flow in
a blood vessel with elastic wall.


