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4.4 Buoyant plume from a steady heat source

[Reference]:
Gebhart, et. al. (Jalluria, Maharjan, Saammakia),

Buoyancy-induced Flows and Transport, 1988,
Hemisphere Publishing Corporation
Let T̃ = T T = temperature variation where Tinfty is a constant (no ambient

stratification). For a strong enough heat source, we expect boundary layer behavior,
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(ru)

x
+

(rv)

r
= 0 (4.4.1)

u
u

x
+ v

u

r
= g (T T ) +

r r

Ã
r
u

r

!
(4.4.2)

u
T̃

x
+ v

T̃

r
=
k

r r

Ã
r
T̃

r

!
(4.4.3)

The centerline r = 0 is an axis of symmetry,
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Far outside the plume r

u 0 and T T , (T̃ 0) (4.4.5)

Rewrite (4.4.3) as
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after using continuity. Now integrating the last equation from r = 0 to r =

x
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Using the boundary conditions, we get or
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0

2 rdr u CT̃ = rate of buoyancy flux

= rate of heat flux

= Q(given rate of heat release at x = 0)

Therefore,
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This is a boundary condition.
Let the stream function be defined by
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r
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x
(4.4.9)

(4.4.1) is automatically satisfied. From the momentum equation:
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From the energy equation
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and from the buoyancy flux condition
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Try a similarity solution with the one-parameter transformation

x ax , r = br , = c , T̃ = dT

From (4.4.10),
2c 4b a = 2c 4b a = d = c 4b (4.4.13)

from (4.4.11)
c+d 2b a = d 2b (4.4.14)

and from (4.4.12)
c+d = 1 (4.4.15)

From these three equations we get
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Th similarity variable can be taken to be

=
r

x1/2
(4.4.16)

and the similarity solution to be
= xF ( ) (4.4.17)

and
T̃ = x 1G( ) (4.4.18)

After a lot of algebra, and noting
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we get from (4.4.10)
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(F ) + g G = 0 (4.4.19)

and from (4.4.11)
k( G0)0 + (FG)0 = 0 (4.4.20)

.
Before integrating, let us normalize :

= ¯, F = F̄ , G = Ḡ. (4.4.21)

It follows from (4.4.19) that
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where prime denotes d/d¯. Setting = and
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(4.4.23)

we get
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Similar normalization of (4.4.20) gives

k
2
(¯Ḡ0)0 + (F̄ Ḡ)0 = 0 (4.4.25)

. which can be simplified to
(¯Ḡ0)0 + Pr(F̄ Ḡ)0 = 0 (4.4.26)

. where
Pr =

k
= Prandtl Number (4.4.27)

For water = 10 2cm2/s, k = 1.42cm2/s, hence Pr = 7. For air = 0.145cm2/s, k =
0.202cm2/s, hence Pr = 0.75.
We now integrate (4.4.26)to give

¯Ḡ0 + PrF̄ Ḡ = constant

Since (x, 0) = 0, we must have F̄ (0) = 0 ; the constant above is zero.

¯Ḡ0 + PrF̄ Ḡ = 0 (4.4.28)

Equation (4.4.28) can be written
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Substituting Eqn. (4.4.29) into Eqn. (4.4.24), the resulting equation for F̄ must be integrated
numerically.
Now let us find the boundary condtions for F or F̄ .
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Eqn. (4.4.8 ) becomes

Q

2 C
=
Z
0

dr r

Ã
1

r r

!
G( )

x
=
Z
0

dr
r

r
x1/2F 0

G

x
=
Z
0

d (F 0G) =
Z
0

d¯(F̄ 0Ḡ)
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Therefore, Z
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Let us choose
Q

2 C
= 1 (4.4.32)

so that Z
0

d¯ F̄ 0Ḡ = 1 (4.4.33)

is the boundary condition for F̄ and Ḡ. Now (4.4.32) defines , the scale of G. Note that
larger Q implies larger and smaller . Thus a stronger heat source leads to a greater
centerline temperature and a thinner plume. Also,
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v 0 as 0,

we must have,

F (0) = 0.

Clearly
F̄ 0

¯
0, and F̄ (¯) = 0 as ¯ 0 (4.4.34)

The numerical results by Mollendorf & Gelhart, 1974, are shown in Figs. 4.4.1, for
various Prandtl numbers. A schlierian photograph due to Gebhart (copied from Van Dyke
An Album of Fluid Motion) is hown in Figure fig:plumeVD.
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Along the centerline u(x, 0) =
³
F 0
´
0
= constant depending on Pr. Why? Buoyancy acceler-

ation is counteracted by entrainment.
Remark: Let the radius of the plume be a which varies as

a x1/2

This is consistent with the behavior that u x0, and T̃ x 1, since

a2uT̃ = Q

On the other hand the mass flux rate is

ua2 x

and the momentum flux rate is
u2a2 x

hence both approach zero at the source. Thus a plume is the result of energy source, not of
mass or momentum.




