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4.4 Buoyant plume from a steady heat source

[Reference]:
Gebhart, et. al. (Jalluria, Maharjan, Saammakia),
Buoyancy-induced Flows and Transport, 1988,
Hemisphere Publishing Corporation
Let T = T — Ty = temperature variation where Tinfty is a constant (no ambient
stratification). For a strong enough heat source, we expect boundary layer behavior,
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The boundary layer equations are
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The centerline r = 0 is an axis of symmetry,
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Far outside the plume r — oo
u—0and T — Tw, (T — 0) (4.4.5)
Rewrite (4.4.3) as
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after using continuity. Now integrating the last equation from » =0 to r = oo
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Using the boundary conditions, we get or

Note that
/ onrdrupCT = rate of buoyancy flux
0
= rate of heat flux
= ((given rate of heat release at z = 0)
Therefore,
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This is a boundary condition.
Let the stream function 1 be defined by
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(4.4.1) is automatically satisfied. From the momentum equation:
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From the energy equation
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and from the buoyancy flux condition
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Try a similarity solution with the one-parameter transformation
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From (4.4.10),
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and from (4.4.12)
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From these three equations we get
1 d
a “a 2 a
Th similarity variable can be taken to be
r
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and the similarity solution to be
¥ = xF(n)
and
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After a lot of algebra, and noting
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we get from (4.4.10)
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and from (4.4.11)
k(nG") + (FG) =0

Before integrating, let us normalize :
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It follows from (4.4.19) that
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where prime denotes d/d7n. Setting v = v and
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which relates o and «,
_ v (4.4.23)
o= g A.
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Similar normalization of (4.4.20) gives
Ek _ o
%(ﬁG’)' + %(FG)’ ~0 (4.4.25)
. which can be simplified to B o
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P, = 7= Prandtl Number (4.4.27)

For water v = 1072cm?/s,k = 1.42cm?/s, hence Pr = 7. For air v = 0.145cm?/s, k =
0.202cm?/s, hence Pr = 0.75.
We now integrate (4.4.26)to give

G’ + P.FG = constant

Since 9 (z,0) = 0, we must have F'(0) = 0 ; the constant above is zero.

nG' + P.FG =0 (4.4.28)
Equation (4.4.28) can be written
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G(7) = G(0) exp (—Pr /0 ! %dﬁ) (4.4.29)

Substituting Eqn. (4.4.29) into Eqn. (4.4.24), the resulting equation for F' must be integrated
numerically. )
Now let us find the boundary condtions for F' or F'.



Eqn. (4.4.8 ) becomes
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is the boundary condition for F' and G. Now (4.4.32) defines o, the scale of G. Note that
larger () implies larger o0 and smaller «. Thus a stronger heat source leads to a greater
centerline temperature and a thinner plume. Also,
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The radial velocity is, in general
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The numerical results by Mollendorf & Gelhart, 1974, are shown in Figs. 4.4.1, for
various Prandtl numbers. A schlierian photograph due to Gebhart (copied from Van Dyke
An Album of Fluid Motion) is hown in Figure fig:plumeVD.
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Along the centerline u(z,0) = (%)0 = constant depending on P,. Why? Buoyancy acceler-

ation is counteracted by entrainment.
Remark: Let the radius of the plume be a which varies as

a ~ 1'1/2
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This is consistent with the behavior that u ~ 2°, and T ~ z !, since

aul = Q
On the other hand the mass flux rate is
ua® ~ x

and the momentum flux rate is

U2CL2 ~ T

hence both approach zero at the source. Thus a plume is the result of energy source, not of
mass or momentum.
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Velacity profiles in an axisymmefric plumae.
(Adapted from Mollendarf and Gebhart, TA74).
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Tamperature profifes in an axisymmaelric pflume.
{Adapted from Mollendorf and Gabhart, T374).



