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4.3 Buoyancy-driven convection - The Valley Wind

ref: Prandtl: Fluid Dynamics.

Due to solar heating during the day, a mountain slope may be warmer than the surround-
ing air in a summer night. Let the air near a mountain slope be stably stratified

T,=1T,+ Ny, (4.3.1)
where T, = constant, and N > 0. Let the slope temperature be :
T,=T, + Ny, (4.3.2)

where T7 > Tj. See the left of Figure 4.3.2. Consider first the static equilibrium:
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Figure 4.3.1: Thermal convection along a slope
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Let A and B be two points with the same elevation but A is on the slope and B is in the
air. Since pa < pg,
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The pressure gradient must drive an upward flow along the slope.
Let us consider the dynamics. Let

<0

T(l’, y) =T, + 0(y>

and
p(x,y) = po + S(y) = static density + dynamic density

By the equation of state,

p=rpoll —B(T—To)] = po[l—pB(T, —To)] — pot.
Therefore
po=po [l =B (T, —To)] = po (1 — BNY')
and
S(l’,y) = —Poﬁe(%y)

Note by ratation of coordinates,
T,—To= Ny = N(zsina + ycosa).

The flow equations are:
Uy + v, =0
p (utig + vy) = —pas + p (Uze + Uyy) — (p = pa) gsina
p (uvg +v0y) = —pay + 1 (Ve + Vyy) — (P — pa) gcos a
uly + 0T, =k (Thw +Tyy) ,

where T is the total temperature and

k=

ﬁocp

is the thermal diffusivity. Since 9/0x = 0, v = 0 from continuity. From Eqn. (4.3.9)

vy, + (Bgsina) = 0.
after invoking Boussinesq approximation. In Eqn. (4.3.11),

8_T_8TO
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= N sin «.

Therefore,
ulN sina = kb,,.
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Combining Eqns.

and

Let

then

The velocity is

(4.3.12) and (4.3.13), we get
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u=Ue "sinn sothat u(0)=0

The temperature is

0 = Ope " cosn
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The boundary conditions at n ~ oo are satisfied. In order that §(0) =T, — T on n = 0 we

choose

QOZTl—TO

Note that the boundary layer thickness is
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Thus if « |, 6 T as 1/sin®a.
Using Eqn. (4.3.13), we get

Hence,
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It is easy to show from (4.3.13) that the total mass flux rate is

do

Mz/0 pudy = po Bk
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Note from (4.3.22) that U is independent of o. If « |, the buoyancy force is weaker, but
the shear rate du/dy is smaller, hence the wall resistance is smaller. U is not reduced!
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Figure 4.3.2: Wind along a valley due to feeding from mountains

On a warm slope (due to solar heating during the day) , air rises at night. If there are
two slopes forming a valley, fluid must be supplied from the bottom of the valley; this is the
reason for valley wind blowing from low altitude to high.

On a cold slope (due to radiation loss at night) air sinks at high noon. Valley wind must
flow from high to low.



