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3-8impulsive.tex

3.8 Impulsive motion of a blunt body and tendency for
separation

Ref: H. Schlichting, Boundary layer theory, p 400 ff.

As an example of unsteady boundary layer, let us consider the initial stage (U,T/L < 1)
of a boundary layer due to the impulsive start of motion near a blunt body, see the sketch
in Figure 3.8.1.
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Figure 3.8.1: Boundary layer around a blunt body

Let us start with the boundary layer approximation and introduce a perturbation expan-
sion in powers of the small ratio U,T/L,
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Equating the coefficients of (%) we get the first (leading) order perturbation equations
in normalized coordinates,

ul + 0l =0, (3.8.6)
ut = uY (3.8.7)
subject to the initial conditions:
W =0W=0. t=0, Vy; (3.8.8)
and the boundary condtions
u =M =0, y=0, Vi (3.8.9)
u =U, y— oo (3.8.10)

Equating the coefficient of (UZT>, we get the second order perturbation equations in

normalized coordinates,

u® o =0, (3.8.11)
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subject to the same initial and boundary conditions on the wall as the first order problem,
except that

2)

u? =0, y— oo (3.8.13)

To return to physical variables, we need only add the coeficient v in front of the viscous
stress term u,, in (3.8.7), and (3.8.12). The first order problem for the tangential velocity
is precisely the Rayleigh problem

ut! = ul) (3.8.14)
subject to the initial conditions:
u =0, t=0, Yy (3.8.15)
and the boundary condtions
u =0, y=0, Vi (3.8.16)
V=U, y— o (3.8.17)

The solution is

u (z,y,t) = U(z)erf(n) = U(m)% /077 e~ dn (3.8.18)



where

0= \/% (3.8.19)
Integrating the continuity equation (3.8.6) we get
v = — Oy %dy = —%2\/%/077 erf(n) dn (3.8.20)
To simply the notation we introduce
ertln) = G(n), [ extln) dn = Go(n) (3:.21)
so that
u = U@Gm), o =~ 2riG(n) (3822)
The second-order approximation is
u® — I/u?%) = UU, — uWMull) — v(l)uél) (3.8.23)
subject to the initial and boundary conditions that
u?(y,0) =0, uP(y,t)=0 fory=0,00 (3.8.24)
The right hand side of (3.8.23) can be worked out so that
u® — uu?%) =UU, [1 — (erf(n))? + e /(:7 erf(n) dn]
= UU, [1 = ()? + hh"] = UU,F () (3.8.25)
A similarity solution is possible. Let us seek a one-parameter transformation,
u® =\ @' = £y y = A%
From (3.8.23) we get
/ /
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Note that z is just a parameter. Clearly a = b = 2¢ so that we can take
e
—= f(n)UU, (3.8.26)

Substituting (3.8.26) into (3.8.25), we get a linear ordinary differential equation

"4 2mf = 4af =4[ = Go¢g — 1] (3.8.27)



subject to the boundary conditions that
f=0, n=0,00 (3.8.28)
The solution is not difficult (see Schlichting, eq. 15.43, p. 400).

f o= erfe(n) l——e"Q +2- (\% + 37:;9 + 4(2772 + 1)]
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The solution is plotted in Figure 3.8.2.
The total solution is

u = Uerf(n) +tUU, f(n) (3.8.30)

Figure 3.8.2: Solution to the problem of impulsive start.

Separation

For a given U(z) when and where will separation first occur? Namely, when is
ou
— = 0aty =0
Ay a“y

Let us use (3.8.30) for a crude estimate. Since
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It can be show n that at n = 0,

(erfn)’ = % ()= % (1 + %)

It follows that 4
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Uu,
Note that t, > 0 only for U, < 0, i.e., a decelerated flow. This is a very crude and mathe-
matically illigitimate estimate since we are equating two terms of different order.
Neveltherless let us apply this result to the impulsive flow passing a circular cylinder
from the left. Let U, be the constant velocity at infinity and the polar angle § be measured
from the upstream stagnation point, then x = af where a is the radius, see Figure 3.8.3. It
is well known in the potential theory that the potential is

ty = (3.8.31)
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The tangential velocity along the cylinder r» = a is

109 U, a\ . B
;%_7<r+7>sm(w—9), r=a

or
U = 2U,sin(m — 0) = 2U, sin(0) = 2U, sinz/a

The minimum ¢4 occurs at the riear stagnation point, x = wa at which
~ 0.35a Usts
U, R
Note that the last condition indicates the illigitimacy of this estimate. Nevertheless we use
it here as an order-of-magnitude guide which may be improved by working out higher order
terms.

In offshore stuctures, wave induced oscillatory flows acound a pile can be separated and
hence affect the drag force on the pile. As an order estimate we take U, = wA where
w =frequency and A =wave amplitude. Hence there is no separation if

At A )
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Since flow changes direction after every half period m/w, there is no separation in every half

period if
A 0.35
—<—=01
a s

This is of course very crude. Experimentally Keulegan and Carpenter have estiblished
that separation occurs in waves if A/a exceeds 1. The ratio A/a is now known as the
Keulegan and Carpenter number.



Figure 3.8.3: Definition of coordinates for a circular cylinder.



