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3.5 Karman’s momentum integral approach

Ref: Schlichting: Boundary layer theory

With a general pressure gradient the boundary layer equations can be solved by a va-
riety of modern numerical means. An alternative which can still be employed to simplify
calculations is the momentum integral method of Karman. We explain this method for a
transient boundary layer along the x-axis forced by an unsteady pressure gradient outside.
This pressure gradient can be due to some unsteady and nonuniform flow such as waves or
gust.

3.5.1 General ideas

Let us limit our discussoin to a two dimentional flow. Recall the continuity

ux + wz = 0 (3.5.1)

and boundary layer equation:

ρ(ut + uux + wuz) = −px + µuzz (3.5.2)

0 = −pz (3.5.3)

The boundary conditions are

u = w = 0, z = 0; u → U, w → 0, z → ∞. (3.5.4)

For general U(x, t) the longitudinal pressure gradient is

−px = ρ(Ut + UUx) (3.5.5)

so that
ρ(ut + uux + wuz) = ρ(Ut + UUx) + µuzz (3.5.6)

Instead of solving the initial-boundary-value problem accurately we introduce a moment
method by integrating the momentum equation across the boundary layer, then make a rea-
sonable assumption on the velocity profile to get the longitudinal variation of the boundary
layer thickness. This is called the Karman’s momentum integral approximation in boundary
layer theory.
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Let us add the following two equations

−µuzz = ρ {Ut + UUx − (ut + uux + wuz)}

and
0 = (U − u)ux + (U − u)wz

to get,

−µuzz = ρ

{

∂

∂t
(U − u) +

∂

∂x
[u(U − u)] + (U − u)

∂U

∂x
+

∂

∂z
[(w(U − u)]

}

Now let us integrate across the boundary layer,

µuz|0 = ρ

{

∂

∂t

∫

∞

0
(U − u)dz +

∂

∂x

∫

∞

0
u(U − u)dz +

∂U

∂x

∫

∞

0
(U − u)dz

}

+ ρ[w(U − u)]∞0

The boundary terms again vanish. Finally, we have,

∂

∂t

∫

∞

0
ρ(U − u)dz +

∂

∂x

∫

∞

0
ρ
(

Uu − u2
)

dz +
∂U

∂x

∫

∞

0
(U − u)dz = µ

∂u

∂z

∣

∣

∣

∣

∣

0

(3.5.7)

This is the Kármán momentum integral equation, representing the momentum balance across
the thickness of the boundary layer.

Figure 3.5.1: Displacement thickness
.

Karman also introduces the displacement thickness as a measure of the lost volume

Uδ1 =
∫

∞

0
(U − u) dz, or δ1 =

∫

∞

0

(

1 −
u

U

)

dz, (3.5.8)
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and the momentum thickness as a measure of the lost momentum

U2δ2 =
∫

∞

0
u(U − u)dz, or δ2 =

∫

∞

0

u

U

(

1 −
u

U

)

dz, (3.5.9)

both due to the slowing down of the fluid in the boundary layer. See Figure 3.5.1.
In certain cases when the velocity profile in the boundary layer can be reasonably guessed

in advance, the Karman momentum intergal equation can be the basis of obtaining an
approximate solution. The procedure is to assume a reasonable profile :

u = Uf
(

y

δ

)

(3.5.10)

and substitute (3.5.10 ) into (3.5.7) equation. After evaluating the integrals a differential
equation is obtained for the boundary layer thickness δ(x, t), which can be more easily solved
for certain initial and boundary conditions.

3.5.2 Application to a transient boundary layer along a flat plate

Consider the two dimensional boundary layer near edge of half infinite plane along the x
axis due to the impulsive start along its own plane. There is no motion anywhere for t < 0.
At t = 0 the plane suddenly advances from right to left perpendicular to its leading edge.
What is the boundary layer flow? Referring to Figure 3.5.2 where the coordinate system is

d

U=0

x

z

o

Figure 3.5.2: Front of boundary layer
.

fixed on the plane. For all t > 0,
∂U

∂t
=

∂U

∂x
= 0

The boundary layer equation reads:

ρ(ut + uux + wuz) = µuzz (3.5.11)

and the Karman momentum inetgral equation reads

∂

∂t

∫

∞

0
ρ(U − u)dz +

∂

∂x

∫

∞

0
ρ
(

Uu − u2
)

dz = µ
∂u

∂z

∣

∣

∣

∣

∣

0

(3.5.12)
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Let us assume
u

U
= f(η), η ≡

z

δ(x, t)
(3.5.13)

then
δ1 = δ

∫

∞

0
(1 − f(η))dη = α1δ (3.5.14)

δ2 = δ
∫

∞

0
f(η)(1 − f(η))dη = α2δ (3.5.15)

and

uz =
U

δ
f ′(0). (3.5.16)

Substituting into Eq. (3.5.12)

α1U
∂δ

∂t
+ α2U

2 ∂δ

∂x
= ν

U

δ
f ′(0)

Therefore,

(α1)
∂ (δ2/2)

∂t
+ (α2U)

∂ (δ2/2)

∂x
= νf ′(0) (3.5.17)

which is a first order wave (hyperbolic) equation for δ2/2. We must add the boundary and
initial conditions:

δ(0, t) = 0, ∀t > 0 (3.5.18)

δ(x, 0) = 0, ∀x > 0 (3.5.19)

Heuristic solution

The fact that the boundary value in (3.5.18) is independent of t for all t suggests that the
solution is independent t for sufficiently large x, i.e.,

∂

∂x

(

δ2

2

)

=
2νf ′(0)

α2U
(3.5.20)

subject to the boundary condition (3.5.18). The solution is simply

δ =

√

2νf ′(0)x

α2U
(3.5.21)

This is the approximate version of the solution by Blasius who solved the steady boundary
layer equation

uux + vuy = νuyy for x > 0, y > 0 (3.5.22)

by the method of similarity.
On the other hand, the fact that the initial value in (3.5.18) is independent of x for all x

suggests that the solution is independent of x for sufficiently large t, i.e.,

∂

∂t

(

δ2

2

)

=
2νf ′(0)

α1
(3.5.23)
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subject to the initial condition (3.5.19). The solution is simply

δ =

√

2νf ′(0)t

α1
(3.5.24)

This is the approximate version of the solution by Rayleigh’s problem which is known to be
governed by

ut = νuyy for t > 0, y > 0 (3.5.25)

To find the range of each solution in the x ∼ t plane, we equate the two δ’s and get

x =
α2Ut

α1
(3.5.26)

Thus (3.5.21) holds in the wedge x > α2Ut
α1

> 0 and (3.5.24) holds in the wedge 0 < x < α2Ut
α1

.
See Figure 3.5.3.

Physically: if t > α1x/α2U , (3.5.21) applies and one has the steady Blasius flow past a
semi-infinite plate; the boundary layer is already in the steady state. See Figure 3.5.4, If
t < α1x/α2U , (3.5.24) applies and one has Rayleigh’s problem of impulsively started plane
infinite in both x < 0 and x > 0. The boundary layer is still in the initial stage and the
effect of the leading edge is not felt elsewhere. The result is summarized in Figure 3.5.5.

To calculate α1 and α2 let us make a special choice of the velocity profile so that f(0) =
0, f ′(1) = f ′′(1) = 0 (due to Karman and Polhausen)

f(η) = 2η − 2η3 + η4, 0 < η < 1 (3.5.27)

Note that
f(0) = 0, f ′(η) = 2 − 6η2 + 4η3, f ′′(η) = −12η + 12η (3.5.28)

then

α1 =
∫ 1

0

(

1 − 2η + 2η3 − η4
)

dη = 3/10 = 0.3

α2 =
∫ 1

0

(

2η − 2η3 + η4
) (

1 − 2η + 2η3 − η4
)

dη = 37/315 ∼= 0.117

and

f ′(0) = 2, or
∂u

∂z

∣

∣

∣

∣

∣

z=0

=
2U

δ

Hence the displacement thickness of the Blasius boundary layer is

δ1 = α1δ = α1

√

2νf ′(0)x

α2U
= 1.754

√

νx

U
(3.5.29)

The momentum integral method is the special case of the moment method, since the
Karman equation is the zeroth moment of the boundary layer equation. For the classical
steady boundary layer problem solved exactly by Blasius using the similarity method, the
momentum integral approximation gives fairly good results, even with various crude profiles,
see Table 3.1.
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Figure 3.5.3: Evolution of a transient boundary layer. (a) Blasius region and Rayleigh region

x

t

o

d

Figure 3.5.4: Evolution of a transient boundary layer. (b) Blasius region

Formal solution

A more formal solution can be obtained as follows: Let

a = α1 b = α2U c = νf ′(0)

then

a
∂

∂t

(

δ2

2

)

+ b
∂

∂x

(

δ2

2

)

= c (3.5.30)

The solution can be facilitated by a change of coordinates from (x, t) to (ξ, ζ) where

ξ = ax + bt ζ = ax − bt (3.5.31)

then
∂

∂t
=

∂

∂ξ

∂ξ

∂t
+

∂

∂ζ

∂ζ

∂t
;

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂ζ

∂ζ

∂x

(

δ2
)

t
=

(

δ2
)

ξ
b +

(

δ2
)

ζ
(−b)

(

δ2
)

x
=

(

δ2
)

ξ
a +

(

δ2
)

ζ
a

Therefore, from (3.5.17),

1

2

[

ab
(

δ2
)

ξ
− ab

(

δ2
)

ζ
+ ab

(

δ2
)

ξ
+ ab

(

δ2
)

ζ

]

= c
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Figure 3.5.5: Evolution of a transient boundary layer. (c) Rayleigh region

Velocty profile Displacment boundary layer thickness
u
U

= f(η), η = y

δ(x)
δ1

√

U
νx

η 1.732
sin πη

2
1.741

2η − 2 η3 + η4 1.754
Blausius 1.721

Table 3.1: Comparson of approximate solution by momentum integral method with the exact
solution of Blasius

1

2

(

δ2
)

ξ
=

c

2ab
=

νf ′(0)

2α1α2U

Integrate once
δ2

2
=

νf ′(0)

2α1α2U
ξ + G(ζ) (3.5.32)

where G is an arbitrary function of ζ.
To determine G(ζ) we first use the initial condition that δ = 0 at t = 0 for all x > 0.

0 =
νf ′(0)

2α1α2U
(ξ)t=0 + G(ζ)t=0

or

0 =
νf ′(0)

2α1α2U
(ax) + G(ax) for x > 0.

Therefore

G(ζ) = −
νf ′(0)

2α1α2U
ζ, ζ > 0 (3.5.33)

What is G(ζ) for ζ < 0? Let us use the boundary condition at x = 0 that δ = 0 for all
t > 0.

0 =
νf ′(0)

2α1α2U
(ξ)x=0 + G(ζ)x=0

or

0 = −
νf ′(0)

2α1α2U
(−bt) + G(−bt), t > 0
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Note that for t > 0, −bt < 0. Therefore,

G(ζ) =
νf ′(0)

2α1α2U
ζ for all ζ < 0. (3.5.34)

Eqs. (3.5.33) and (3.5.34) complete the solution for all ζ > 0 and ζ < 0.
Let us return to x and t

δ2

2
=

νf ′(0)

2α1α2U
ξ −

νf ′(0)

2α1α2U
ζ =

νf ′(0)

2α1α2U
2bt for ax − bt > 0

=
νf ′(0)

2α1α2U
ξ +

νf ′(0)

2α1α2U
ζ =

νf ′(0)

2α1α2U
2ax for ax − bt < 0

Therefore,

δ =

√

2νf ′(0)

α1
t for x >

α2U

α1
t (3.5.35)

and

δ =

√

2νf ′(0)

α2U
x for x <

α2U

α1
t (3.5.36)

These are the same as (3.5.24) and (3.5.21).


