
1

Lecture Notes on Fluid Dynmics

(1.63J/2.21J)
by Chiang C. Mei, MIT

3-2Hi-Re-bl.tex

3.2 Viscous Flow at High Reynolds Numbers

Let us first give a heuristic estimates of boundary layer in steady flows.
Consider a particle near the wall to be influenced by viscosity. After traveling a distance

x from the edge, it has been under viscous influence for a time of t = x/U . Let U be large.

For finite x, t is small so that vorticity is spread sideways to the width (νt)1/2
∼ (νx/U)1/2.

Let us define this width to be the boundary layer, which has thickness δ = O (νx/U)1/2.
Alternatively we start from Navier-Stokes equations :
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When viscosity is important y = O(δ), x = O(L), convective inertia is comparable to viscous
stresses.
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Shear stress on the awall :
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Hence the drag coefficient is,
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For water ν = 10−5 ft2/sec. Let U = 1 ft/sec L = 1 ft, then Re = 105. Hence,
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10−2 (δ ∼ 0.003 ft)

and
CD ∼ 0.003.

Experiments for flat plates (Schlichting, p. 133) show that: CD ∼ 0.002, but experiments
for a circular cylinder show that CD ≈ 0(1) because flow is separated for most Re .

3.2.1 Systematic Boundary-layer Approximation

Let u = O(U), x = O(L), y = 0(δ). From continuity, v = O(Uδ/L). Let u → Uu, v →
Uδ
L

v, x → Lx, y → δy
U

L
(ux + vy) = 0. (3.2.6)
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From Eqn. (3.2.6)
ux + vy = 0. (3.2.9)

From Eqn. (3.2.7)

uux + vuy = −
P

ρU2
px +

1

Re

(

uxx +
L2

δ2
uyy

)

. (3.2.10)
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To keep the dominant viscous stress term in Eqn. (3.2.10), we must have

(

δ

L

)

2

=
1

Re
or

δ

L
= Re−1/2. (3.2.12)

From Eqn. (3.2.11)

py = O

(

δ2

L2

)

(3.2.13)



3

and from Eqn. (3.2.10)
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In physical variables, we have to leading order

ux + vy = 0 (3.2.15)
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The pressure is constant across the boundary layer and must be the same as the pressure
just outside. In the inviscid outer flow

UUx + V Uy = −
1

ρ
px. (3.2.17)

Since V = 0 on the wall, px = −ρUUx. Hence, inside the boundary layer:

uux + vuy = UUx + νuyy. (3.2.18)

This is the classical boundary layer approximation for high Re flows, due to Prandtl
(1905).


