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1-8Rayleigh.tex

1.8 Rayleigh’s Problem - solid wall as a source of vor-
ticity

Owing to terms representing convective inertia, the Navier-Stokes equations are highly non-
linear. Explicit solutions are usually limited to a class of problems where inertia is identically
zero. This happens when the flow is unidirectional and uniform. Flow quantities depend
only on a transverse coordinate. We discuss one such example with a view to examining the
role of viscosity.

Consider a two-dimensional flow in the upper half plane of (z,y) bounded below by a
rigid plate coinciding with the x axis. At ¢ = 0 the plate suddenly moves in the tangential
direction at constant velocity U. Find the development of the fluid motion in the region
y > 0.

Because the plate is infinite in extent, the flow must be uniform in z, i.e. % =0. It
follows from continuity that
v
— =0 >0
ay ) y

implying that v = constant in y. Since v(0,f) = 0, v = 0 for all y. Therefore, the only
unknown is u(y, t) which must satisfy the momentum equation,

ou 0u
— =V — 1.8.1
at " oy (18.1)
where "
v="= (1.8.2)
p
denotes the kinematic viscosity. The boundary conditions are :
u=U, y=0, t>0; noslip (1.8.3)
u=0, y~oo, t>0 (1.8.4)
The initial condition is
u=0,t=0, Vy (1.8.5)

Mathematically this is the heat conduction problem for a semi-infinite rod. The solution is
well-known (Carlaw & Jeager, Conduction of Heat in Solids or Mei, Mathematical Analysis
in Engineering) ,

w="U <1 - eer\iy_t) (1.8.6)
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Figure 1.8.1: Velocity profile due to impulsive motion of x-plane
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is the error function. As shown in Figure 1.8.1,

fluid momentum is diffused away from the plane y = 0. The region affected by viscosity
(the boundary layer) grows in time as § ~ v/vt. This observation can be confirmed, indeed
anticipated, merely by a scaling argument based on the momentum equation (1.8.1) without
solving it. Let U, t,d denote the scales of velocity, time and region of viscosity respectively.
For viscosity to be important, the two terms in (1.8.1) must be comparable in order of
magnitude, i.e.,
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It follows that
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Let us use this simple example to study the role of vorticity
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In this problem there is only one vorticity component,
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which is just the velocity shear. Mathematically (1.8.9) is the solution to the diffusion
equation

(1.8.9)

¢ 0*C
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ot~ oy? (1.8.10)
which follows from (1.8.1), and the initial condition that there is a plane source of at y = 0:
Co(y, 0) = 2U5(y). (L8.11)

Thus vorticity is diffused away from the solid wall which acts as a voriticity source. Note
that the shear stress at the wall is
— U \/7 (1.8.12)
=0
which is initially infinite but decays with time.

Why is the wall a source of vorticity? Just after the plane started to move there is a
velocity discontinuity at y = 0+. The associated velocity gradient is Ou/dy = —Ud(y) hence
the vorticity is a highly concentrated function of y: —0u/dy = Ud(y). Furthermore the half
space (0 < y < 0o0) problem can be thought of as one half of the whole plane problem for
—o0 < y < oo if the top of the fluid in the lower half plane suddenly moves to the left at the
speed U. This would give an initial vorticity Ud(y) at y = 0—. Thus for the a whole space
problem there is a vorticity source of total strength 2Ud(y) at the initial instant. As time
proceeds, half of the released vorticity is diffused to the region of y > 0 and half to y < 0.

Thus, the solid wall is the source of vorticity.
The reader can verify the solution (1.8.9) by assuming a similarity form,

_C (v
Gy, t) = \/%f (ﬁ) (1.8.13)

Tuy(0,1) =

“a



