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Displacement Method--


Ideal Truss 

8-1. GENERAL 

The basic equations defining the behavior of an ideal truss consist of force­
u u v;liter;ilm .... nltins and force-displacement relations. One can 

sp 
reduce the 

Ut;UtllllI i ia .UI-i ol 

system to a set of equations involving only the unknown joint displacements 
by substituting the force-displacement relations into the force-equilibrium 
equations. This particular method of solution is called the displacement or 
stiffhess method. Alternatively, one can, by eliminating the displacements, 

reduce the governing equations to a set of equations involving certain bar 

forces. The latter procedure is referred to as the fJrce or flexibility method. 
We emphasize that these two methods are just alternate procedures for solving 

the same basic equations. The displacement method is easier to automate 
than the force method and has a wider range of application. However, it is 

a computer-based method, i.e., it is not suited for hand computation. In 
contrast, the force method is more suited to hand computation than to machine 

computation. 
In what follows, we first develop the equations for the displacement method 

by operating on the governing equations expressed in partitioned form. We 

then describe a procedure for assembling the necessary system matrices using 

only the connectivity table. This procedure follows naturally ifone first operates 
on the unpartitioned equations and then introduces the displacement restraints. 
The remaining portion of the chapter is devoted to the treatment of nonlinear 
behavior. We outline an incremental analysis procedure, apply the classical 
stability criterion, and finally, discuss linearized stability analysis. 

8-2. OPERATION ON THE PARTITIONED EQUATIONS 

The governing partitioned equations for an ideal truss are developed in 

Sec. 6-7. For convenience, we summarize these equations below. 
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P1 = B1F (nd eqs.) (a) 
P2 = B2 F (r eqs.) (b) 
F = Fi + kAUt (m eqs.) (c) 
Fi = k(-eo + A2 U2 ) (d) 

The unknowns are the m bar forces (F), the r reactions (P2), and the nd joint 
displacements (U,). One can consider F to represent the initial bar forces, 
that is, the bar forces due to the initial elongations and support movements 
with U1 = 0. The term kA1UI represents the bar forces due to Us. When the 
material is linearelastic, k and eo are constant. Also, Aj = Br when the geometry 
is linear. 

We obtain a set of 'ndequations relating the n displacement unknowns, U, 
by substituting for F in (a). The resulting matrix equation has the form 

(B1kA 1)U = P, - BIFi (8-1) 

We solve (8-1) for U 1, determine F from (c), and P2 from (b). The coefficient 
matrix for U1 is called the system stiffness matrix and written as 

K1 = B1kA 1 (8-2) 

One can interpret B1 Fi as representing the initial joint forces due to the initial 
elongations and support movements with U1 = 0. Then P1 - B1 Fi represents 
the net unbalanced joint forces. 

When the geometry is linear, K1 1 reduces to 

K11 = BlkBT = ATfkA 1 (8-3) 

If the material is linear, k is constant and positive definite for real materials. 
Then, the stiffness matrix for the linear case is positive definite when the system 
is initially stable, that is, when r(B) = nd.t Conversely, if it is not positive 
definite, the system is initially unstable. 

If the material is nonlinear, k and e depend on e. We have employed a 
piecewise linear representation for the force-elongation curve which results in 
linear relations. However, one has to iterate when the limiting elongation 
for a segment is exceeded. 

The geometrically nonlinear case is more difficult since both A and B depend 
on U1. One can iterate on (8-1), but this requires solving a nonsymmetrical 
system of equations. It is more efficient to transform (8-1) to a symmetrical 
system by transferring some nonlinear terms to the right-hand side. Nonlinear 
analysis procedures are treated in Sec. 8-4. 

Even when the behavior is completely linear, the procedure outlined above 
for generating the system matrices is not efficient for a large structure, since 

t See Prob. 2-14. 
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it requires the multiplication of large sparse matrices. For example, one obtains 
the system stiffness matrix by evaluating the triple matrix product, 

= AkA 1 (a)K11 

One can take account of symmetry and the fact that k is diagonal, but Al is 
generally quite sparse. Therefore, what is needed is a method of generating K 
which does not involve multiplication of large sparse matrices. A method 
which has proven to be extremely efficient is described in the next section. 

8-3. THE DIRECT STIFFNESS METHOD 

We start with (6-37), the force-displacement relation for bar n: 

F, = Fo, + kJt7llnun - kl,7YnUn (a) 

F0, n=- k,,eo,n 

where n+, n_ denote the joints at the positive and negative ends of bar n. One 
can consider F0, as the bar force due to the initial elongation with the ends 
fixed (u, = un = 0). Now, we let p,, p,,_ be the external jointforce matrices 
required to equilibrate the action of F,. Noting (6-43), we see that 

Pn+ + Fnr 
(8-4) 

Pn_- = Pn+ 

Substituting for F,, (8-4) expands to 

0 , , + kn,P YnUn+ - kPnYt,,un (b)Pn+ = IiFo

Pn_ = -Pn 

One can interpret (b) as end action-joint displacement relations since the 
elements of +F,pT are the components of the bar force with respect to the 
basic frame. 

Continuing, we let 
kn = kp.n (8-5) 

Note that kn is of order i x i where i = 2 or 3 for a two or three-dimensional 
truss, respectively. When the geometry is linear, I,, = Yn=eOn and k. is sym­

metrical. With this notation, (b) takes a more compact form, 

+ kUn+Pn+ = ±PnFo, - k,,u (8-6) 
Pn = -- TFo,,, l- kull,,+ + knUn 

We refer to k as the bar stiffness matrix. Equation (8-6) defines the joint 
forces required for bar n. The total joint forces required are obtained by 
summing over the bars. 
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We have defined 

= {PI, P2,..., Pj} (t x 1) 

O&= { U2,2 , Uj} (ii x 1) 

as the general external joint force and joint displacement matrices. Now, we 
write the complete system of ij joint force-equilibrium equations, expressed in 
terms of the displacements, as 

J. = .Asf,I + 0P'o (8-7) 

We refer to ,f[, which is of order ij x ij, as the unrestrained system stiffness 
matrix. The elements of -. 0 are the required joint forces due to the initial 

Sq!elongations and represents the required joint forces due to the joint 
displacements. 

We assemble ,A' and Po in partitioned form, working with successive mem­
bers. The contributions for member n follow directly from (8-6). 

0o (Partitioned Form Is j x 1) 

+ oF, I,,n in row n+ 
(8-8) 

- o ,,Pit in row n_ 

-.f (Partitioned Form Is j X j) 

+kn in row n+, column n+ 

-k,, in row n, column n_ 
(8-9)

-kn in row n_, column n+ 

+ k, in row n_, column n_ 

Example 8-1 

The connectivity table and general form of .Yf and ?two for the numbering shown in 
Fig. E8-I are presented below: 

Fig. E8-1 

0 0


4 A 3 
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is listed below. Note that .,- has the form of a quasi-tridiagonal band matrix when it is 
partitioned according to sections rather than individual joints. The submatrices for thisBar 1 2 3 4 5 
truss are of order 4 x 4. 

r � L .� .+joint 1 2 2 4 2 
l. I < II, llc1 I1.= U7u u3 U4 

117 11o 

2 J--joint 4 1 3 3 4 5 UY 

Pi k, +k2 -k 1 -k 2 

P2 -kl kl +k3 -k3 -k4 
U, U2 U3 U4 +k4 I 

P kl + k2 -k 2 -kl P3 -k2 -k 3 k2+k3 -k 5 -k 6 -k, 

P2 -k 2 k2 + k3 + k5 -k 3 -k 5 
+k5 +k7 

P3 |--k3 k3 + k4 -k 4 
+k6 

I
p4 | -ks -k 5 kl + k4 + k5 

P4 -k 4 -k 5 k4 +k5 I - k8 

+k8 
._,, 

Po, Fo, 1PTI - F0. pT P5 -k 6 I k6+k9 -kg 
+kto 

0 ,s+F0, 3P + Fo t 
o = =[ pT 

Po, 3 -Fo, 3P1 - F, 4 4 P6 -k 7 -k 8 -kg k8 +k7 -klt -kl 2 

04 - o,,. + F, 4P - Fo. p +k9 +kl 

+k1 2 

Example 8-2 
P7 --klo -kil ko+kll -k1 3 

The external force matrix, pj, involves uj and the displacement matrices for those joints 

connected to joint j by bars. Now, pj corresponds to row j and uj to column j of X'. By 
-k 12 I-k, 3suitably numbering the joints, one can restrict the finite elements of *- to a zone about Ps kl2+ki3 

the diagonal. This is quite desirable from a computational point of view. 

Fig. E8-2 The introduction of displacement restraints involves first transforming the 
Sect. 1 partitioned elements of •0 and ,7 to local frames associated with the restraints, 

,'. (/ \ /I
\ permuting the actual rows, and finally partitioning the actual rows. The steps 

3 5 / I 7 1 are indicated below. 

[4~~~~~~~~ -I ­
10 / -qJ U - {} 

0=1 s-~~~~~I I (I
I j We write the system of joint force-equilibrium equations referred to the local 

II 8 joint frames asl2 J 4 5 / O 
_I II _ -J = .JqLJ + ,~Jo (8-10) 

Consider the structure shown. We group the vertical joints into sections. The equi- The transformation lawvs for the submatrices of X and ?%Ofollow from (6-57). 

librium equations for section k involve only the joints in section k and the adjacent sections. 
For example, the equations for section 3 (which correspond to Ps, P6) will involve only 

'0, n = Ron ,z, n 

° 
the displacement matrices for sections 2, 3, 4. This suggests that we number the joints by Xtj,, = RO,,R n, T (8-11) 

section. The unpartitioned stiffness matrix corresponding to the above numbering scheme , n= 1,2,...,j 
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.The step, PJ -- P, involves only a rearrangement of the rows of 3 J We Substituting (g) and (h) in (8-7) and equating the result to (8-13), we obtain 
obtain the corresponding stiffness matrix, K, by performing the same operations 

T on both the rows and columns of XJ. The rearranged system of equations is o, K,, = DXDT = D CT p kyCDT 

written as Po., = Dso = DsCr[keo 
s, t= 1, 2 (i) 

P = KU + Po (8-12) 

Finally, we express (8-12) in partitioned form: h, 
In order to obtain (8-13), we must rearrange the rows and columns of X 

P1 = K11U1 + K1 2f[ 2 + P, I' and then partition. This operation is quite time-consuming. Also, it leads to1 

P 2 = K2 1U1 + K2 2U2 + Po, 2 
(8-13) rectangular submatrices. In what follows, we describe a procedure for intro­

ducing displacement restraints which avoids these difficulties. 
The first equation in (8-13) is identical to (8-1). We start with the complete system of equations referred to the basic frame, 

Example 8-3 ,1'011 = J - ~?o = 17pN (8-14) 

It is of interest to express the partitioned elements of K in terms of the geometrical, We assemble -o0 and , using (8-8) and (8-9). Then, we add to -o the 
connectivity, and displacement transformation matrices. We start with the general un- external force matrices for those joints which are unrestrained. It remains to 
partitioned equations' (6-28), (6-40), and (6-44), (6-50): modify the rows and columns corresponding to joints which are either fully or 

partially restrained. 
= F = CrFpTF (a) 

F F + k0'/1 = Fo + kyCFt (b) 
Case A: Full Restraint 

Then, substituting for F in (a) and equating the result to (8-7) leads to 

A = CrT(pky)C (c) 
Suppose uq = q. Then Pq is unknown. We replace the equation for pq by 

Uq = Uq_o = C(TFo) (d) 

The matrix, pTky, is a quasi-diagonal matrix of order in. The diagonal submatrices are of This involves the following operations on the submatrices of,: and A0N. 

order i, and the submatrix at location n has the form, k,,ry,,. We have defined this product 1. On S. Set off diagonal matrix elements in row q and column q equal
as k,. Then, if we let to 0 and the diagonal matrix element equal to Ii. 

kl jklplyl 
k2 2Y2 

Xq¢ - 0 

k = k2 (e) YW4q = Ii (8-15) 

we can express X as 2. On >N. Add terms in OAN due to uq: 
off = CTkC (f) 

Carrying out (8-9) for n = 1,2 . . , n is the same as evaluating the triple matrix product. 
>N, (t = DN, ( - *iqUq 

T 
)N, = qObviously, (8-9) is more efficient than (f). (8-16) 

The introduction of displacement restraints can be represented as q e = 1,2,...,j 

P = D. 
Case B: Partial Restraint-Local Frame 

(g)
P1 = D1P We suppose the rth element in u is prescribed. 
P2 = D -¢ 

and uq, = q~ = prescribed 
O = TU = D, + DiV2 (h) pq= unknown 
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We have to delete the equation corresponding to pqr and replace it with 'p5 
u* = -u5 * = 0 

Ur = -r,. '-5 
0 ~P 5J 

Step I-- Assemblage of Basic Matrices Step 2-Operation on .' and .N 

We assemble Eq, Gq, u*, p* according to the following: 1. Premultiply row q of ' and 'PNby EqR °q. 

1. Eq and Gq. We start with /XqF = EqROq,Vrqe 
= 1,2,...,j (a) 

E = Ii G = 0i VN, q = EqRWq4N, q 

and we set 2. Postmultiply column q of ' by - Rq TUq* and add to N-
Er,. =0 Grr= +1 

PN, e= N, - at qRoq TqU (b) 
2. u*. We start with an ith-order column vector having zero elements and e= 1,2,...,j 

we set the element in the rth row equal to iq,. Note that this matrix involves 
only the prescribed displacements (local frame) in their natural locations. 3. Postmultiply column q of X by (EqRoq)T 

3. p*. We start with an ith-order column vector having zero elements and 
we insert the values of the prescribedjoint forces (local frame) in their natural Xlq = Xlq(ERq)T = 1, 2..., j (c) 

locations. Note that the elements corresponding to the reactions are zero. 4. Add Gq to qq 

When the joint is fully restrained, 1qq = Xqq + Gq (d) 

E = i G = Ii 5. Add +p* and + Uq* to N, 

u = Uq p* = Oi 
,PN, q = ,¢N,q + uq + p* (e) 

Suppose joint 5 is partially restrained. The data consist of: 
The operation on row q and column q are summarized below. 

(a) The rotation matrix, R05 , defining the direction of the local frame 
at 5 with respect to the basic frame. On , 

(b) The direction (or directions) of the displacement restraint and the 
.,'q = EqROAeqt

value (or values) of the prescribed displacement. e=q 
rt' = rt'q(EqRo)T (8-17) 

direction r, u5 ,r, Xqq = (EqR°q)qq(EqR°q)T + Gq 
f= 1,2,...,j 

(c) The values of the prescribed joint forces: 
On EN

ps5 j r j= 1...,i 
Rq O

,>N, ( = PN. e - etq l TUq 

As an illustration, suppose r = 2. Then, in (b), we read in q = 1,2,...,j (8-18) 

qr = 2 52 ,N = (EqROq)N,q- (EqROq) R°qRT * ++ u* 

In (c), we read in When f is symmetrical (this will be the case when the system is geometrically
-5 P5 
Psi P53 linear), we can work only with the submatrices on and above the diagonal. The 

The four basic matrices are (for r = 2) contracted operations for the symmetrical case are threefold: 

' 

100 0[o )N, = N, t - Yj/fqRO
q 

TU 

E 5 = O 0 0 G= 1 0 Xtq = Xfq(EqR°) (8-19) 
t= 1,2,.., q - 1

0o 0 
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)N, q= (EqROq)N, q - (EqRO) qqRoq, TU + p U 
3qq = (EqR°oq)Xqq(EqR)T + Gq 

(8-20) contribution for each member. For member n, we put (see (8-4)) 

+ Fpn in row n,+ 
N, f = >N, e - iT 

RO q 
T1 1* 

-F,,[J' in row n_
YJqe = (EqRq)qf (8-21) 

........
()n-e ui,
g = q + 1,q + 2,...,j 

, 
t - -

v, .li wn. ~rtt fs aP tlur vAd La IulI eacn partially restrainec joint 
to the local joint reference frame, using

The operations outlined above are carried out for each restrained joint. 
Note that the modifications for joint q involve only row q and column q. We Pq = R°qp 
denote the modified system of equations by The final result is J required to equilibrate the bar forces. This operation 

provides a static check on the solution in addition to furnishing the reactions.*od = ON~ (8-22) When the problem is geometrically nonlinear, y,,, ,,, and k depend on the 
Equation (8-22) represents ij equations. The coefficient matrix 7*' will be joint displacements. In this case, it is generally more efficient to apply an 

nonsingular when K11 is nonsingular. To show this, we start with the first incremental formulation rather than iterate on (8-22). 
equation in (8-13) and an additional set of r dummy equations: 

Example 8-4 

i -i l} - Po'1 - K12U2} (a) We illustrate these operations for the truss shown in Fig. E8-4. 
10 U2 

Equation (a) represents ii equations. This system is transformed to (8-22) when 
Fig. E8-4 

we permute U, PN to /J, ~J. They are related by (see (6-63)) 

U = II/s X2 

(b)= HT p 
450 

where I is a permutation matrix. It follows that I_ X 

6 A6 
IIR (c) 

P* = Hrp* y2 

and, since H is an orthogonal matrix, 

1X*1 = K11 (8-23) 
1. Member-Joint Connectivity Table 

It is more convenient to work with (8-22) rather than (a) since the solution 
of (8-22) yields the joint displacement matrices listed in their natural order, Bar (n) 1 2 3 4 5 6 7 8 9 10 11
that is, according to increasing joint number. Once qd'is known, we convert 
the joint displacement matrices to the basic frame, using +joint(n+) 1 3 1 3 4 3 5 3 5 6 5T, 

-joint(n_) 2 1 4 2 2 4 3 6 4 4 6 
Uq = R

° q' 
Tuq 

The bar forces are determined from 

0 , + kn,,(un - ) 2. Assemblage of XFn = Fo

Next, we calculate F plT and assemble in partitioned form by summing the We consider the geometry to be linear. Then, ,, = c,, and k,, = ka,nO,. Applying
(8-9) results in X listed below. 
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\ 1 2 3 4 5 I 6 

I kl+k 2 +k3 -kl -k2 -k 3 

0 
2 -k1 k, +k 4 +k5 -k4 -k 5 

3 -k 2 - k4 k2 +k¢+k 6 -k 6 -k7 --k 8 

+k7 +k8 

4 -k3 -k5 - k6 k3 +k5 +k6 -kg -ki 0 

_.~~~ -kg9+klo 
.. _ 

5 -k7 - kg +k7+k - k1 

+kl 

0 
6 -k1O -kll +ks8+klo 

+k,., 
I I _ _ _ 

Note that .' is symmetrical and quasi-tridiagonal, with submatrices of order 4 x 4. 

3. Introduction of Joint Displacement Restraints 

The original equations are 
,B~y' = 3 - P o = ~]'N 

where _P contains the external joint forces. We start with Y9N= - o. If joint q is un­
restrained, we put p, in row q of -VN. If joint q is fully restrained, we modify ,' and , 
according to (8-15) and (8-16). Finally, if joint q is partially restrained, we use (8-19) 
through (8-21). Since .Y,is symmetrical, we have to list only the submatrices on and above 
the diagonal. It is convenient to work with successive joint numbers. For this system, 
joint 2 is fully restrained and joints 4, 6 are partially restrained. The basic matrices for 
joints 4, 6 and the initial and final forms of.1, itN are listed below. Note that this procedure 
does not destroy the banding of the stiffness matrix. 

Joint4 (u42 is prescribed) 

0 4 R = I2 

U = {0, 4 2 } P4 = {P41, O} 

Joint 6 (u~2 is prescribed) 

R06=I[i I ] 
=0 [-1 1 

E, = 0, 0 
0

P6=(P6, } 
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Initial matrices(~.: and ,r = -'o) 

(U) I (U2) (U3) (u4) (l5) (U6) 

I_A1_ oC13 ¢ 14 - 0O, 1 

'5 22 "-' 23 24 - O, 2 

i 
'rr3 )'~34 X-'35 '36 

t/ 3 :/45 .X-4 -- , 4 

Sym ' 55 --0. 5 

- 'w 6I I 

Final matrices (.'* and /,^*) 

I .. 1t(ul) (112) (U3) (t"4) (Us) (U) 

11 0 'y1 4E4 _R0P. $ I c4q 42iZ-

'2 0 0 1i2 

' -,K33 .K34 E4 ,1-'35 |X'36(E6 R 6) - 'o. 3- '23U2 - h34l 
0 6 ' 

-,, R TU6 +p3 36

E4.'44E4 E4.54,6(EoR°6)T E,(- ;20 4 - 24 u2 )-E,k, 4 4u4 
0 6 +G4 + p* + u -- E.fY 4 6R ' Ttl* 

--6
i 

Sym. .(5 5 5Fs6(E6°6)T - o. s-lr 5 4 

+ p5 -- '5 6 R
06 . "U* 
06. T * 

6 r 
(E6RO ))66(E6R 6) E6R° 

6
(-5o 6- 'F46tl4 

+G6 - .i 66R 76O u*) + p6 +U* 

l 

8-4. INCREMENTAL FORMULATION; CLASSICAL STABILITY 
CRITERION 

Equations (8-13), (8-22) are valid for both linear and nonlinear behavior. 
However, it is more efficient with respect to computational effort to employ 
an incremental formulation when the system is nonlinear. With an incremental 
formulation, one applies the load in increments and determines the corre­
sponding incremental displacements. The total displacement is obtained by 
summing the displacement increments. An incremental loading procedure can 
also be used with (8-13) but, in this case, one is working with total displacement 
rather than with incremental displacement. In this section, we develop a set of 
equations relating the inciemental external load and the resulting incremental 
displacements. These equations are also nonlinear, but if one works with small 
load increments, the equations can be linearized. Our approach will be 
similar to that followed previously. We first establish incremental member 
force-displacement relations and then apply the direct stiffness method to 
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generate the incremental system equations. We complete the section with a notation pertaining to a segment and write the "generalized" incremental 
discussion of the classical stability criterion. expression in the simple form 

We start with (8-4), which defines the external joint forces required to AF = k(Ae - Aeo) (8-28)equilibrate the action of the force for bar n, 
where k, Aeo are constant for a segment. They have to be changed if the limitPn. = F,,f p,, =-Pn+ (a) of the segment is exceeded or the bar is unloading. Since Ae is unknown, one 

Equations (a) are satisfied at an equilibrium position. We suppose an in- has to iterate, taking the values of k, Aeo corresponding to the initial equilibrium
cremental external load AP is applied and define AU as the resulting incremental position as the first estimate. This is equivalent to using the tangent stiffness. 
displacement for the new equilibrium position. Since F and depend on U, The initial elongation, Aeo, is included to allow for an incremental temperature
their values will change. Letting AF, All be the total increments in F, II due to change. Substituting for Ae, (8-28) takes the form 
AU, and requiring (a) to be satisfied at both positions, leads to the following
incremental force-equilibrium equations: AF, = AFo,,, + k,, de,, + k, d2en 

AFo, == - k. Aeo,. (8-29) 
Ap, = F, Aln AFIT + AF Al.PT (n 'A 

-zJo0-
Ap.n = -Ap + Finally, we substitute for AF,,, Al, in (8-24) and group the terms as follows: 

To proceed further, we need to evaluate the increments in e and P. The exact Ap,,+ = k,,(Au,,+ - Au,,_) + Apo,, + Apg,n (8-30)relations are given by (6-22): Apn = - Ap, + 

e, = a(,, - u,,_) + '(P, - lan)(U, . - u,) (a) where 
(a) k,,,, = F,,g + k ll,rn 

Pn - an = -- (u+ - U)T Apo,, = AFo, +d (8-31)
rApg, = k.(-eo, dP i - +2e,,p, + de, d n +

To allow for the possibility of retaining only certain nonlinear terms, we write 
½d2endl,) 

(a) as We interpret k, as the tangent stiffness matrix. The vector, Apg, contains linear, 
n. - an = (,, - _)Tgn quadratic, and cubic terms in Au. We have included the subscript g to indicate 

en = oan(u,, - u._) + u,, - u, _) g,(n,, - un_) (8- 25) that it is a nonlinear geometric term. 
We write the total set of incremental joint equilibrium equations as= Yn(Un, - Un-) 

If all the nonlinear terms are retained, AP = t,Aq1 + APo + &APg (8-32) 

1_I where V$, is assembled using (8-9) and Ao + A ., with (8-8). Note that 
, is symmetrical. Finally, we introduce the displacement restraints by ap­

plying (8-19)-(8-21). The modified equations arei
To neglect a particular displacement component, we delete the corresponding 

~lr =t 1~ Llr~0 - MP 9 (8-33)element in Ii. For geometrically linear behavior, g, = 0. Operating on (8-25), 
:X/* Ac A* - A0 

we obtain 1 It is convenient to include the prescribed incremental support displacement.

A,, - dl,, = (Au,, - Au,._)g, (8-26) terms in Am'* so that A?, involves only the incremental temperature and 

and Ag*the variable displacement increments. The contracted equations are 
Ae,, = de, + -d2en Kt, 11 AU1 = AP - APo, - APg, - Kt, 12 AU 2 (8-34)de, = l,,(Au,, - Au,_) (8-27) 

d2e = d,(Au,, - Au,_) 
where K, is symmetrical. 

We cannot solve (8-33) directly for At!since Ag* contains quadratic and
It remains to evaluate AF,,. We allow for a piecewise linear material and cubic terms in A. There are a number of techniques for solving nonlinear

employ the relationst developed in Sec. 6-4. For convenience, we drop all the algebraic equations. t We describe here the method of successive substitutions, 

t See (6-31), (6-32), and (6-33). t See Ref. 12. 
e 
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which is the easiest to implement, but its convergence rate is slower in com- But K,. l and dJt* are related by 

parison to most of the other methods.t 
and AYP are independent of AV. They de- I A-*i = TFirst, we note that ,'t~* &A*, nr t, 11 i1 (8-41) 

pend only on the initial equilibrium position and the incremental loading. We t 1,· 

combine AM* and A0 and write (8-33) as where H is a nonsingular permutation matrix, which rearranges the elements
t1 

, A = AN - A .,* (8-35) of AJ according to 
AU = A6JY (8-42) 

Now, we let QA(n) represent the nth estimate for AJ and determine the Then, '* and K,, have the same definiteness property.t Finally, we can 
(n + 1)th estimate by solving classify the stability of an equilibrium position in terms of the determinant of 

the tangent stiffness matrix: $ 
dlr* A/(+ ) = A-6P*N -- A91* Aji· l-·- (8-36)-- ur '-"9 InN" 

D = 1,X*-i -IK,,I 
The iteration involves only evaluation of A?'*and back-substitution once Vi* stable D>0 
is transformed to a triangular matrix. The factor method is particularly con- neutral D=0 (8-43) 
venient since CT*is symmetrical. With this method, 

unstable D<0 

-. t* > STS (8-37) 
Example 8-5 

where S is an upper triangular matrix. We replace (8-36) with We illustrate the application of both the total (8-13) and incremental (8-34) formulations 
to the truss shown in Fig. E8-5A. To simplify the analysis, we suppose the material is 

S Aq/(n"+) = Q (8--38) linearly elastic, k, = k2 = k, and there are no initial elongations or support movement. 
STQ = A.•'A - CAP*z`" 

Fig. ES-5A 

In linearized incremental analysis, we delete Aid* in (8-35) and take the b <<d 

solution of PI12 , 12 

,Y* AJ = AD (8-39) L--- -r 0 
as the "actual" displacement increment. One can interpret this scheme as one X2 

b 
i 

cycle successive substitution. 
The solution degenerates when the tangent stiffness matrix becomes singular. 

-- ATo investigate the behavior in the neighborhood of this point, we apply the d - d 

classical stability criterion developed in Sec. 7-6. The appropriate form for a 
truss is given by (7-41): The initial direction cosines for the bars are 

m I 
d2WD = E (F,d2e, + dF, de) > 0 for arbitrary AU, with AU2 = 0 (a) a1 = [d -b] a2 = [- -b] (a)

L Ld 
n= 1 

The deformed geometric measures are defined by (8-25). They reduce to 

We have already evaluated the above terms. Using (8-26), (8-27), and (8-29) 
P. = n + U g,n, 

with Aeo = 0, 
e = YnUlt 

n = 1,2 (b)
n 

F, d2e + dF, den = (Au,,+ - Aun _)kt,,(Au,,+ - Au,-) (b) on = n + m tgn 

and (a) can be written as for this example. Since b << d, we can neglect the nonlinear terms due to u l, i.e., we can 
take 

d2 WD = AUKKt, 11AU 1 > 0 for arbitrary AU1 (8-40) 
0 (c) 

It follows that Kt, 11 must be positive definite for a stable equilibrium position. 
t See Prob. 2-13 for a proof. 

t Iterative techniques are discussed in greater detail in Secs. 18-7, 18-8, 18-9. $ See Sec. 2-5. 
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Using (c), k 1 P12
F, = F2 = - (b - ut12)u12 (1) 

L 
We can write (k) as L 

U12 = 2 
(d) 2k (b - u, 2)(b - 2t2) 

(m) 

-L[-d -bY2 1 + ~u1 2] and solve (mn)by iteration. Alternatively, one can specify ,, 2 and evaluate Pt2 from (k). 
The latter approach works only when there is one variable. The solution is plotted in 

12 '- [-d -b + t1 2 ] 
Fig. E8-5B. 

L 

Continuing, the bar force-displacement relations are Pl2 Fig. E8-5B 

F = ke,, = ky,,u, n = 1, 2 (e) I
I A2 - kb3 

Finally, the force-equilibrium equation for joint follows by applying (8-6) to both bars. 9 12 
( + )L)b /C

Pi = (k + k2)ul = k(PT + r' )ul2 (f)1 

Equations (e) and (f) expand to 
y3 

)b 
Z12 

(I B 

0I I 2k 1 Efll 
B 

2k (g) 
P12J 0 L (b - u 2)(b - u,1 2) u 2J We describe next the generation of the incremental equations which follow from (8-26)-

I (8-32). Applying (8-26), (8-27) to (b)-(d) results in
and 

k
F1 =-- (du - ( - 2)L12) 

Ap = d = Autg = [O A'I 
L 

k 
(h) 

ae, = p ~,,zu= +--b+12U2~ l u 
= (-du 1 - (b - 112)2) ae = a, Lul = 1,, Au , + -(-bt + U12)A12 1 1 

.s A I -1 
The diagonal form of the coefficient matrix is due to the fact that we neglected u in the d'en = Augn Aul = (Au12)

2 
(n).L

expressions for and p. This approximation uncouples the equations. Note that (g) is 
the first equation in (8-13) with U2 and Po, t set to 0. 

d d 
LSolving the first equationt in (g), we obtain 

aC = + 
L 

42 = 

n= 1,2 

, (!_)2 F" (i) 
We are assuming no initial elongation. Then, 

AF,, = k Ae = k(de,, + d2 e,,) (o)The corresponding bar forces are 
The tangent stiffness matrix and incremental geometric load term are defined by (8-31). 
Using (n), we obtainF = 7 

(j) 
2F = - F Lkac (-b + u2)k 1 

This result is actually the solution for the linear geometric case. kkL (P)
The expression for u 2and the corresponding bar forces follow from the second equation LSym p(-b + 2)

2 + L­
in (g). 

P12 [= (b - u12)(b - u12) Ul 2 (k) 2L 
Ap,n = Lk_--- - - - - - - - - - - - - - (q) 

A 

- Jt Equation (g)is (8-1) with Fi = 0. 
Atu, Aul 2 + 23-( (-b + lt12)+ 2A12 

F2
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Finally, we assemble the incremental equilibrium equations for joint 1 using (8-30). Lastly, we outline how one applies the method of successive substitution to (t). For 
convenience, we drop the subscripts and write (t) as 

Ap1 = (kt, I + kt, 2)Aul + Apg, + Apg. 2 (r) 

k, Au = Ap - Apg (z) 

In the first step, we take Apg = 0. 

02k () 2k j Au, I} Aut) = P (aa)
kt 

0 P2(-b + 12)2 + -(F1 + F2) Au,, 
(s) The second estimate is determined fromI L 

Ap 1 l 
Au(2) = (Ap - Ap")) (bb) 

2IAPIt k(_I2) [3(-b + , 1 2) + Au 12] k, 

Generalizing (bb), 
Note that (s) is (8-34). Also, the incremental equations are uncoupled. Au(. + = I--(A - Ap(")) (cc)

We restrict the analysis to only p 2 loading. Setting F, = F2 in (s) results in k, 

[(F + (-b + t, 2)2) Au122 AP 2 - k [Autl 2 + 3(-b + u,2)] (t) The convergence is illustrated in Fig. E8-5C. Case (b) shows how the scheme divergesA 

where F is determined from (e). The coefficient of Au1 2 is the tangent stiffness with respect Fig. E8-5C 

to u12. 

dP12 2 (F + k_(-b+ tu12)) (u)
du2 L L 

Applying the classical stability criterion (8--43) to (t), we see that 

> 0 stable 

=O neutral (v)P1 2 

< 0 unstable 

Points A, B are stability transition points and the segment A-B is unstable. 
If k = 0, the truss is neutral with respect to Au,,. Now there is a discontinuity in k Aut 

at F = -Feb, the pin-ended Euler load, when the material is linearly elastic: 

AE 
IFI < Feb k= 

L ip 
(a) 

F = -Fb k = 0 (w) 

7r
2 EI3 

Feb L 

Ap- Apg( 1 ) 

To determine whether the members buckle before point A is reached, we compare FA Ap - I 
with -Feb. Using (u), 

AE -Eb2 .I ....I I 

_, 3L
22 

1 

( )FA = - AE2 2-b (x) AId a Iu Au 
Au t 1)U(2) Au(3) 

Then, for system instability rather than member instability to occur, b must satisfy 
(b) 

1 2
(3I )3 1 (y) in the vicinity of a neutral point (k = 0). Convergence generally degenerates as kt -° 0 

and one has to resort to an alternate method. 
where p is the radius of gyration of the section. 
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8-5. LINEARIZED STABILITY ANALYSIS 

In the previous section, we illustrated the behavior of a geometrically non­
linear system. The analysis involves first solving the nonlinear equilibrium 
equations for the displacements and then applying the classical stability crite­
rion to determine the stability of a particular equilibrium position. Once the 
nonlinear equilibrium equations are solved, the stability can be readily deter­
mined. Now, if a geometrically nonlinear system is loaded in such a way that 
it behaves as if it were geometrically linear, we can neglect the displacement 
terms in Kt, , that is, we can take = a in the expression for k,. This ap­
proximation is quite convenient since we have only to solve the linear problem 
in order to apply the stability criterion. We refer to this procedure as linearized 
stabilityanalysis. 

According to (8-40), an equilibrium position is stable (neutral, unstable) 
when the tangent stiffness matrix is positive definite (positive semi-definite, in­
different). We generate ,, transform to .,F* and test X',* for positive defi­
niteness. We have shown that ,'l* and Kt, 11 have the same definiteness prop­
erty, i.e., Kt, 11 is positive definite if c,'* is positive definite. Working with ,i* 
rather than K,, 11 avoids having to permute the rows and columns. 

In linearized stability analysis, we approximate k,,, with 

kt, = kactan + F,,g,, (8-44) 

The first term is the linear stiffness matrix. We interpret the second term as a 
geometric stiffness. The bar forces are determined from a linear analysis of 
the truss. If the loading is defined in terms of a single load parameter, 2, we 
can write (8-44) as 

F,, = F,, 
(8-45)

k,,, = ke ,, + i2kq,, 

The tangent stiffness matrix is generated by applying the Direct Stiffness Method 
to each term in (8-45). We express the actual and modlfied matrices as 

Kt, it = Kt, l + Kg, t1 (8-46) 
and 

t = .f *+ or * (8-47) 

where K is the system stiffness matrix for linear behavior. It is symmetrical 
and positive definite when the system is initially stable. The geometrical stiff­
ness, Kg, is also symmetrical but it may not be positive definite. 

Equation (8-46) shows that the tangent stiffness matrix varies linearly with 
the load parameter. If the system is initially stable, Kt, 11 is positive definite 
for = 0. As ;2 is increased, a transition from stable to neutral equilibrium 
may occur at some load level, say 2cr. To determine 2cr, we note that neutral 
equilibrium (see (8-43)) corresponds to K,, II = 0 which, in turn, can be 
interpreted as the existence of a non-trivial solution of 

Kt, 11 AU =0 (a) 

SEC. 8-5. LINEARIZED STABILITY ANALYSIS 

Substituting for Kt, 11 transforms (a) to a characteristic value problem, 

Kt, AU1 = -Kg, 11 AU1 (8-48) 

and icr is the smallest eigenvaluet of (8-48). 
Since K,t, ll = -1 *, we can work with 

X"* AV J = 0 

.X* aMl J = -*'* AI/J' (8-49) 

instead of (8-48). Both equations lead to the same value of ;c. However, 
(8-49) has r additional characteristic values equal to - 1 since we have added 
r dummy equations. To show this, we substitute for X,* using (8-41) and 
note (8-42). 

rTrKt,[11 ° AU -IT [K 11 00] AU, (a) 
Premultiplyingby l ,(a) becomes 

Premultiplying by _ (n)- , (a) becomes 

Kt. l1 AUl = -Kg. 1t AU (nd eqs.) (b) 
AU 2 = - AU2 (r eqs.) (c) 

The solution of (c) is 

2 = 22 = I = r = -1 

AU2 = C + C2 + + C{ (d) 

This solution must be disregarded since AU 2 is actually a null matrix. 

Example 8-6 

Consider the system shown. We suppose the bars are identical, the material is linearly 
elastic, and there is no support movement. 

The geometry change is negligible under a vertical load and we can use the linearized 
stability criterion. Working with the undeformed geometry, we have 

L 
F1 = F2 = -_ L

2b 
- ~~~~~L (a) 

t Matrix iteration (Ref. 1)is a convenient computational scheme for determining 2r. We apply 
it to 

(- )AU=() K AU, 

which satisfies the restrictions on the method. 
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Neutral equilibrium (K, 11 is semidefinite) occurs at 

Fig. E8-6 
2cr = 2kb d)2 2AEb ()2 (h)

W - L V)j 

Note that (g) has only one eigenvalue instead of two. This is a consequence of our using 
approximate expressions for Equations (e) instead of the exact expressions. At = 2

cr, 

xi the system is neutral with respect to Au, 1, i.e., the buckling mode is antisymmetric. 
Neutral equilibrium also occurs when the bars either buckle or yield. The value of 2 

for Euler buckling of the bars is 

22b 2b 2El1 2AEb 2X2 
Acre b = Fb = L -= LL L (i) 

Comparing (h) and (i), we see that Euler buckling of the bars controls when 

d > rp (j) 
The exact expression for gn is 

Wed d(8-45). 1 
(k) 

We let k, = k2 k. The system stiffness matrices follow from (8-44) and (8-45). If we work with (k), 
1 

Kt, l = k + ke, 2 = k(OtrI +t2t2) Kg, 11= --b 2 (I) 

and 

re 0 ] 
(b) 

Kt, l = K, 1 1 + Kg, 1l = 2 ) b 2 2 (m) 
and 

Kg, 1I = kg, + kg, 2 =- - (g + g2) (C) 
In this case, there are two characteristic values and therefore two critical values of2. 

It remains to determine g, and g2 which are defined by 

,, = ,, + UIg,, (d) 

We neglect u12 in the general expression for f1,,.This is reasonable when d <<b. The 
2. 2r = 2kb (b) (b) 

(n) 

approximate expressions for P,, and g,n are 

1 1 
P2 - [-d + ul -b The second root corresponds to neutral equilibrium with respect to Au, 2. For this example, 

L L (e) d <<b, and the first root defines the critical load. 
1 [ 01 It is of interest to compare 2r,, 2 with the buckling load found in Example 8-5. There 

gl = g2 =L o we considered d >> b and followed the nonlinear behavior up to the point at which the 

Finally, slope of the PI2 -u 1 2 curve vanished (neutral with respect to Aul 2): 

KL ,1= J (f) K dl-- = x P2 = .2 (o)
du12 max 

and 
The linearized result is significantly higher than the true buckling load. In general, the 

linear buckling load is an upper bound. How close it is to the actual value will depend on 
2

K, i = K, It + K,l = 2kl A 01 the geometry and loading. When d << b, it is quite close, while it considerably overestimates 
the true load for d >> b.· 'L L 
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PROBLEMS 

8-1. Consider U2 and P1 to be prescribedand the behavior to be physically 
15' 

Initial elongation of bar =­ in.Q - 25Of/O.Horizontal displacement of joint 2 = in. to the left 

linear. 
(a) Express Ilp = VT - PfrU in terms of U1 , U2 . Use 

10 kips I 

VT = a klcj(ej - e, j)2 =(e -e )Tk(e - e) 
j= 

(b) Show that (8-1) are the Euler equations for Hl(U,). Note that 15' 6 kips 

dV = F de de = B AU 1 

(c) Express d2 II, as a quadratic form in AU,. Hint: Obtain de hv 3~~ .~ < CI~~~~ L~X~~~X t't 

operating on (7-8). 
8-2. 
(a) 

For the structure sketched: 
Determine K,,. 

Prob. 8-4 

(b) Determine u and F due to a temperature increase of 100°F for all 
the bars. Assume no support movements at joints 2, 3, 4. 

8-3. For the structure sketched: 
Determine the displacements, bar forces, and reactions. 

8-4. Refer to Example 8-2. Suppose we number the joints as shown. 
Develop the general form of and compare with the result of Example 8-2. 0 ® 

8-5. 

8-6. 

For the structure sketched, determine 
.~~~~~~~~~~~ 

For the structure sketched: 

-(Ea , E) *. 

Develop the general form ofAF*. Indicate how you would obtain K,,. 8 0 7 0 6 0 
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Prob. 8-520' 

© i 
E constant for all bars 

Bar Area 
I 3a

15' 
2 4a 

3 3 3a 
4 4a 
5 2.5a 

Y3 
2 y3 

\Z 

8-7. Determine the load-deflection relation for the system shown. Consider 
the material to be linearly elastic and the bars to be identical. Assume no initial 
elongation or support movement. 

8-8. Investigate the elastic stability of the system shown. Assume the 
material is linearly elastic and no support movements. Use the linearized 
stability criterion and work with the exact expression for g,. Rework the 
problem, considering d << b and using the corresponding approximate expres­
sion for gn-

Prob. 8-7 

d <<b 

kl = k2 = E 

x1 

Fd d-4 
K2 

Prob. 8-8 

IX 

X2 

Up Prob. 8-9 

2( 

li 
8-9. Determine the lowest critical load for the truss shown. Assume the 

material is linearly elastic and all bars have the same stiffness. 

Prob. 8-6 
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8-10. The governing equations for geometrically nonlinear behavior of a Show that 

linearly elastic discrete system such as a truss are nonlinear algebraic equations kij = kOsrcsiCrj 

containing up to third-degree displacement terms. We have expressed them as 
kijk I [CsiCrj(21C,kCs + Csk-r)] (h) 

.C = o + S i = 0 +- k• ViL (a) 
k 

where ,., .Xcontain linear displacement terms. This form is dictated by our k<ijkf : *j7 CSiCseCjCrk 

choice of matrix notation. In order to expand (a), we must shift from matrix 
to indicial notation. where c is defined by 

For convenience, we employ the summation convention. If a subscript is 
U,, - Un - = 1 -'1 U+ = Cii (i)

repeated in a term, it is understood the term is summed over the range of the 
repeated subscript. An example is 

Discuss how you would locate the appropriate addresses for the bar 
stiffness tensors in the system tensors. What symmetry properties do 

aijbj = abijj (j = 1,2, .. M) (b) the k's exhibit? D[o these properties also apply for the system tensors? 
j= (b) Develop the incremental equations relating Au, AR and compare with 

We write the ith equilibrium equation for the system as (this representation (8-30). 

is suggested in Ref. 8-10): (c) Specialize the incremental equations for linearized stability analysis. 
8-11. For the structure sketched: 

1 , KktU )Uj = ;Pi - Po.i (c)(Kij Kijk ++ KU 
Prob. 8-11 

where i, j, k, t.range over the total number of unknowns, Uj is the total value 
Pi ,ulof the jth displacement unknown, A is a load parameter, Pi defines the load 

distribution, and the K's are constants which can be interpreted as second-, 
third, and fourth-order tensors. The second-order tensor, K,j, is the linear 

Linearly elastic mi
stiffness matrix. No support mover 

initial elongation. 
(a) We generate the system tensors by superimposing the contribution of 11 =k2=k 

Ieach bar. The first step involves converting the matrix expressions 0 
P,,+ = finF,, pn = -P,.. (d) i 

I 

Iwhere I 

F, = k,,e, + Fo, n,, L 
en = Y(U,,+ - ,,_) (e) 

Yn = n + - (Un+ - Un _) - ) - . i2L 

in = + LL(u, - u,,_) (a) Determine the nonlinear incremental equilibrium equations at the equi­
librium position corresponding to p, - 0, P2 = P2,,, the linearized 

over to indicial form. We drop the n subscript, define p and u as critical load. 
(b) Take Ap, = 0 and solve for Ap2 as a function of Aut. Comment on 

how the system behaves when a small horizontal load, Pm= ±+P2, is 
UU1.t (f) applied in addition to P2.

P = Pn -n­

and write (d) in the form 

Pi = (kij + ijkUk + kijktukllU)lulj + Po, i (g) 


