8
Displacement Method—
Ideal Truss

8-1. GENERAL

The basic equations defining the behavior of an iQeal truss consist of forcle—
equilibrium equations and force-displacement relations. One can r,e’duce tlte
system to a set of equations involving only t}}e unl.mown joint dxspldglgglgn S
by substituting the force-displacement rela'tmn§ into the forc.:c—equn rium
equations. This particular method of solution 18 f:allgd the dzsplacement ?r
stiffness method. Alternatively, one can, by ehmllnatm‘g thc‘dlsp‘laﬁemertx) s;_
reduce the governing equations to a set of equations mvolvxqg f.cxlamh i{
forces. The latter procedure is referred to as the force or flexibility method.
We emphasize that these two methods are just alternate proce@ures for solving
the same basic equations. The displacement method. is casier to automate
than the force method and has a wider range of application. Howev'er, it is
a computer-based method, ie., it is not suited for han:_;i computation. ‘In
contrast, the force method is more suited to hand computation than to machine
Coﬁpv]i{fz::cgllows, we first develop the equations for fhe displgcement mct}{;d
by operating on the governing equations expressed in partitioned ff)rm. We
then describe a procedure for assembling the necessary system matrices }Jsmg
only the connectivity table. This proccdu‘re follows naturz}lly if one first opcrgtf
on the unpartitioned equations and then introduces the displacement restraints.
The remaining portion of the chapter is devoted to the treatment of nonhn.earl
behavior. We outline an incremental analysis proced}lre, apply the classica
stability criterion, and finally, discuss linearized stability analysis.

8—-2. OPERATION ON THE PARTITIONED EQUATIONS

The governing partitioned equations for an ideal truss are developed in
'Sec. 6—7. For convenience, we summarize these equations below.
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P, =B/F (ng egs.) (a)
P, = B,F (r egs.) b
F=F; + kA, U; {m egs.) . (©
F; = k(—eo + AZUZ) (d)

The unknowns are the m bar forces (F), the r reactions (P,), and the n, joint
displacements (U;). One can consider F; to rcpresent the initial bar forces,
that is, the bar forces due to the initial elongations and support movements
with Uy = 0. The term kAU, represents the bar forces due to U;. When the
material is linear elastic,k and e, are constant. Also, A; = B,-T when the geometry
18 linear. .

We obtain a set of n; equations relating the n, displacement unknowns, U;,

by substituting for F in (a). The resulting matrix equation has the form
(BkA)U, = P, — B,F, (8-1)
We solve (8§~1) for U,, determine F from (c), and P, from (b). The coefficient
matrix for Uy is called the system stiffiness matrix and written as
K;; = BkA, (8-2)
One can interpret B, F; as representing the initial joint forces due to the initial
elongations and support movements with U; = 0. Then P; — B, F; represents
the net unbalanced joint forces.

When the geometry is linear, K, , reduces to

K, = BkB] = AlkA, (8-3)
If the material is linear, k is constant and positive definite for real materials.
Then, the stiffness matrix for the linear casc is positive definite when the system
is initially stable, that is, when #(B,) = n,. 1 Conversely, if it is not positive
definite, the system is initially unstable.

If the material is nonlinear, k and e, depend on e. We have employed a
piecewise linear representation for the force-elongation curve which results in
linear rclations. However, one has to iterate when the limiting elongation
for a segment is exceeded.

The geometrically nonlinear case is more difficult since both A and B depend
on U;. One can iterate on (8—1), but this requires solving a nonsymmetrical
system of equations. It is more efficient to transform (8—1) to a symmetrical
system by transferring some nonlinear terms to the right-hand side. Nonlinear
analysis procedures are treated in Sec. §—4.

Even when the behavior is completely linear, the procedure outlined above
for generating the system matrices is not efficient for a large structure, since

T See Prob. 2-14.
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it requires the multiplication of large sparse matrices. For example, one obtains
the system stiffness matrix by evaluating the triple matrix product,

Ky, = ATkA, (@)

One can take account of symmetry and the fact that k is diagonal, but A, 18
generally quite sparse. Therefore, what is needed is a method of generating K
which does not involve multiplication of large sparse matrices. A method
which has proven to be extremely efficient is described in the next section.

8-3. THE DIRECT STIFFNESS METHOD

We start with (6-37), the force-displacement relation for bar n:

Fn = FO.n + knYn"ru - kn'Ynuru (a)
F(),n = —'kneO,n

where n,, n_ denote the joints at the positive and negative ends of bar n. One
can consider F, , as the bar force due to the initial elongation with the ends
fixed (u,, = u,_ = 0). Now, we let p,,, p,_ be the external joint force matrices
required to equilibrate the action of F,. Noting (6-43), we sce that

= +F§f
Ip)rH _ ipnﬁn (8‘“4)

Substituting for F,, (§—4) expands to

pn+ = ﬂ;{Fo, n + knBI'Ynun), - knﬁZ’)’n“n; (b)
Pr. = ——pru.

One can interpret (b) as end action—joint displacement relations since the
clements of + F,BT are the components of the bar force with respect to the
basic frame.

Continuing, we let
Kk, = kB1v, (8-5)

Note that k, is of order i x i where i = 2 or 3 for a two or three-dimensional

truss, respectively. When the geometry is linear, §, = v, = @, and k, is sym-
metrical. With this notation, (b) takes a more compact form,

— BTF —
pn+ - Bn F;.n + knun+ knun._ (8—6)
Pn. = '—'sn FO,n - knuru + kn“n_

We refer to k, as the bar stiffness matrix. Equation (8—6) defines the joint
forces required for bar n. The total joint forces required are obtained by
summing over the bars.
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We have defined

'@z{l’bl’z:”wl’j} (i x 1)
U = {a;,u,, ... 0} (ij x 1)

as .the general external joint force and joint displacement matrices. Now, we
write the complete system of i joint force-equilibrium equations, expressed in
terms of the displacements, as

P=HU+ Py (8-7)

We refer to 27, which is of order ij x ij, as the unrestrained system stifiness
matrix. The elements of 2, are the required joint forces due to the initial
elongations and A % represents the required joint forces due to the joint
displacements.

We assemble A& and 2, in partitioned form, working with successive mem-
bers. The contributions for member n follow directly from (8-6).

Po(Partitioned Form Is j x 1)

+Fo Br  inrown,

~Fo BT intown. (#-8)
A (Partitioned Form Is j X j)
+k, in row n,, column n.,
-k, in row n,, column n_
(8-9)

-k, in row n.., column n,
+k, in row n_, column n_

Example 8-1

The connectivity table and general form of £ and 2, for the numbering shown in
Fig. E8-1 are presented below:

1 @ ) Fig. E8—1
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Bar 1 23 45
+joint 1 2 2 4 2
—joint 4 1 3 3 4
uy u u3 Uy
P: . k; + ks, -k, ~ky
P2 —k, k; + k3 + ks —ks; —ks
Ps '—k3 k3 + k4 “‘k4
Ps ~ky —ks —k, k; + ky + ks
Po, 1 Fo, 1” — F,, zﬁg
P = Po2{ _ Fo,.B3 + Fo B3 + Fo. 5T
° Po, s —F,, 33 — Fo,d}?{
Po,4 ~Fo (BT + Fo 4bs — Fo. B3
Example 8-2

The external force matrix, p;, involves u; and the displacement matrices for those joints
connected to joint j by bars. Now, p; corresponds to row j and u; to column j of A By
suitably numbering the joints, one can restrict the finite clements of A to a zone about
the diagonal. This is quite desirable from a computational point of view.

Fig. E8-2

Consider the structure shown. We group the vertical joints into sections. The equi-
librium equations for section k involve only the joints in section k and the adjacent sections.
For example, the equations for section 3 {which correspond to ps, pg) will involve only
the displacement matrices for sections 2, 3, 4. This suggests that we number the joints by
section. The unpartitioned stiffness matrix corresponding to the above numbering scheme
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is listed below. Note that #" has the form of a quasi-tridiagonal band matrix when it is
partitioned according to sections rather than individual joints. The submatrices for this
truss are of order 4 x 4.

u, u, a3 uy ug ug u, g
pi| kitky|—k, =k,
bk | Kerksloks |-k
+k, |
ps|—k; —k; l ky+k; |—ks —kg -k,
I+k5 +ky l
+kg l
%
P4+ ~ks ks k4+k5' —ks
t +ks
S S T B
Ps ~ke l ks+ko | —ko l—kno
+kyo
} i
Ps ~k; —ks —ko kg+ks  —kyy —kq;
' +ko +k11| '
+Kky, |
P7 ~kyo —kyy I kio+kyp| —ky3
I—}:‘k”
Ps —kiz l—kna kyp+ks

The introduction of displacement restraints involves first transforming the
partitioned elements of 2, and A to local frames associated with the restraints,
permuting the actual rows, and finally partitioning the actual rows. The steps
are indicated below. :

We write the system of joint force-equilibrium equations referred to the local
joint frames as

P = KU + P (8-10)
The transformation laws for the submatrices of 4" and 22, follow from (6-57).
g)g,n = Ronyo,n
%‘i’n — RO(?%'{"ROn,T
tLn=1,2,...,j

8-11)
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The step, 27 — P, involves only a rearrangement of the rows of 2/, We
obtain the corresponding stiffness matrix, K, by performing the same operations
on both the rows and columns of 4™, The rearranged system of equations is
written as

P =KU + P, (8-12)
Finally, we express (8—12) in partitioned form:
P, = KUy + K,,U; + Py, (8-13)

P, = Ky Uy + KU, + P

The first equation in (8—13) is identical to (8—1).

Examplie 8-3

It is of interest to express the partitioned elements of K in terms of the geometrical,
connectivity, and displacement transformation matrices. We start with the general un-
partitioned equations (6~28), (6-40), and (6-44), (6-50):

P = BF = C'p"F (a)
P =F, + ke = Fy + kyCU (b)
Then, substitutiné for F in (a) and equating the result to (8-7) leads to
A = CT("ky)C ©
) 74 o= CT(BTFO) (d)

The matrix, B"ky, is a quasi-diagonal matrix of order im. The diagonal submatrices are of
order i, and the submatrix at location n has the form, k,Bly,. We have defined this product
as k,. Then, if we let

k, kiBly,
k kBT
ky = 2 — 232Y2.‘ ©
k)’l kmﬁ;’;’Ym
we can express A as
A = CTkxC f)
Carrying out (8-9)forn = 1, 2,..., mis the same as evaluating the triple matrix product.
Obviously, (8-9) is more efficient than (f).
The introduction of displacement restraints can be represented as
P = D2
Y
P.= D2 (g
P, = D,?7
and
4 =DTU =DIU, + DIU, (h)
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Substituting (g) and (h) in (8~7) and equating the result to (8—13), we obtain

K, = DAD] = D,CTp kyCDT

f= i
Po., = D2, = D.CTpke, st=12 ()

In order to obtain (8-13), we must rearrange the rows and columns of A~
and then partition. This operation is quite time-consuming. Also, it leads to
rectangular submatrices. In what follows, we describe a procedure for intro-
ducing displacement restraints which avoids these difficulties.

We start with the complete system of equations referred to the basic frame,

HU =P — Py = Py, - (8-14)

We assemble — 2, and 47, using (8—8) and (8-9). Then, we add to — &, the
external force matrices for those joints which are unrestrained. It remains to
modify the rows and columns corresponding to joints which are either fully or
partially restrained.

Case A: Full Restraint .
Suppose u, = 1,. Then p, is unknown. We replace the equation for p, by

u, = U,

This involves the following operations on the submatrices of 4" and 2y.

1. On A" Set off diagonal matrix elements in row g and column ¢ equal
to 0 and the diagonal matrix element equal to I,.

.7(,” = 0 {, #
Hoy=0 T (8-15)
%‘qqz‘—li T Ay a"".]
2. On 2y. Addterms in 2y due to %,:
g)N,( = @N,t - J{!qﬁq
P g =1, (8-16)

t+q t=1,2,...,j
Case B: Partial Restraint—Local Frame
We suppose the rth element in uf is prescribed.

ul, = U, = prescribed
p%. = unknown

Il
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We have to delete the equation corresponding to p%. and replace it with

¢ =
ul, = —ug,

Step 1 —Assemblage of Basic Matrices
We assemble E,, G,, uf, p¥ according to the following:
1. E,and G, We start with
E=1I G

I

0;
and we set
E,=0 G,=+1

2. uf. We start with an ith-order column vector having zero elements and
we set the element in the rth row equal to @}, Note that this matrix involves
only the prescribed displacements (local frame) in their natural locations.

3. pF. We start with an ith-order column vector having zero elements and
we insert the values of the prescribed joint forces (local frame) in their natural
locations. Note that the elements corresponding to the reactions are zero.

When the joint is fully restrained,
E =0 G=1]
uy=u, pf=0
Suppose joint 5 is partially restrained. The data consist of:

(@) The rotation matrix, R%%, defining the dircction of the local frame
at 5 with respect to the basic frame.

(b) The direction (or directions) of the displacement restraint and the
value (or values) of the prescribed displacement.

direction r, 3,
(c) The values of the prescribed joint forces:
Py j#ET j=1L...,i
As an illustration, suppose r = 2. Then, in (b), we read in

r=2 Ui,

In (c), we read in
SIS

The four basic matrices are (for r = 2)

1 00 000
E;=10 0 O Gs=10 10
0 0 1 000
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0 P31
uf =<, pi =<0
0 P33

Step 2—Operation on A and Py
1. Premultiply row g of #” and 22 by E,R%.
é‘f;": _ P;ZI;ZZZ;’: t=1,2...,j (@)
2. Postmultiply column g of 4" by — R°% Tu} and add to Py.
Py = Py — H (RO Tus  (®)
C=1,2...,j
3. Postmultiply column g of A" by (E,R%%)T
Hoog = HofBRY £ =1,2,...,] ©

4. Add G,to Ay,
Hopy = Ko+ Gy @

5. Add +p¥and +ufto Py ,
PNg=Pnqg + 0 + 0] (e)

The operation on row g and column g are summarized below.

On A
Hge = EROUA ¢ .
Hig = H B R P
Hyq = (EqRoq)y{'qq(EqROq)T + G, =12...,7
On Py
Pr = Py — Hi BT
¢t #q £=1,2,...,j 8-18)

Pr.q = ER )Py, — (ERYA R Tuf + p¥ + u}

When ¢ is symmetrical (this will be the case when the system is geometrically
linear), we can work only with the submatrices on and above the diagonal. The
contracted operations for the symmetrical case are threefold:

— - Og. T
@N)[ = v@N’[ - ']{‘(:qRq U,

H g = H e ERY)T - (8-19)
(=1,2,...,9—1
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P, o = (ER®YPy , — (ER*NA L R T + pf + uf (8-20)
H g = (ERYH JERY)T + G,
@N,( = @N,: - J[;,RO"’Tu;‘
H g = (E,RODA (8-21)

t=q+Lg+2,....j

The operations outlined above are carried out for each restrained joint.
Note that the modifications for joint g involve only row ¢ and column q. We

denote the modified system of equations by
A Y = P (8-22)

Equation (8-22) represents ij equations. The coefficient matrix A * will be
nonsingular when K, is nonsingular. To show this, we start with the first
equation in (8~13) and an additional set of » dummy equations:

K [ 01U _ [P, [=Poy —KiUa] _ o,
et e o

Equation (a) represents ij equations. This system is transformed to (8-22) when
we permute U, Py to %7, 2%. They are related by (sec (6-63))

U = 1’
2’ = I'P (®)
where I is a permutation matrix. It follows that
Ky 0
H* =17
I [0 IJH ©
Pk = 0P}
and, since IT is an orthogonal matrix,
| ] = [Ku] (8-23)

It is more convenient to work with (8-22) rather than (a) since the solution
of (8-22) yields the joint displacement matrices listed in their natural order,
that is, according to increasing joint number. Once % is known, we convert
the joint displacement matrices to the basic frame, using

u, = R Tuf
The bar forces are determined from
Fn = FO,n + kn’Yn(un+ - un_)

Next, we calculate F, 7 and assemble & in partitioned form by summing the

T
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contribution for each member. For member n, we put (see (8-4))

+F.pr

—r nﬁz‘

Once 2 is known, we convert the force matrix for each partially restrained joint
to the local joint reference frame, using

in row m
in row n_.

Pg = ROqPq

The final result is 2/ required to equilibrate the bar forces. This operation
provides a static check on the solution in addition to furnishing the reactions.

When the problem is geometrically nonlinear, y,, §,, and k, depend on the
joint displacements. In this case, it is generally more efficient to apply an
incremental formulation rather than iterate on (8-22).

Example 8—-4

We illustrate these operations for the truss shown in Fig. E8—4.

Fig. E8—4

X2

Ao
™

®
W R

1. Member-Joint Connectivity Table

6
Yl

Bar (n) 123 456 7289 1011

o

+joint(ny) 1 3 1 3 43 535 6 5
~joint(n.) 2 1 4 2 2 43 6 4 4 6

2. Assemblage of A

We consider the geometry to be linear. Then, B, = o, and k, = k,ola,. Applying
(8-9) results in o¢" listed below.
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1 2 3 4 5 6

1 ki+k,+ks | —k, -k, —k;
0

21—k ki+k,+ks | —k, —ks

3] -k, —ka ky+ko+ke | —ke -k, —kg

41—k, —ks —kg ks+ks+kg | —ko —Kkyo

+ko+kig
5 -k, —ke +k;+ko | —Kky;
+kyy

] 0 .

6 ~ks ~kio —ky,; +kg+kio
+ky,

Note that 4" is symmetrical and quasi-tridiagonal, with submatrices of order 4 x 4.

3. Introduction of Joint Displacement Restraints

The original equations are
HU =P — Py = Py

where & contains the external joint forces. We start with 22y = —2,. If joint ¢ is un-
restrained, we put p, in row g of 2y. If joint ¢ is fully restrained, we modify 4" and 2y
according to (8-15) and (8-16). Finally, if joint ¢ is partially restrained, we use (8-19)
through (8~21). Since /" is symmetrical, we have to list only the submatrices on and above
the diagonal. It is convenicnt to work with successive joint numbers. For this system,
joint 2 is fully restrained and joints 4, 6 are partially restrained. The basic matrices for
joints 4,6 and the initial and final forms of A", 2y are listed below. Note that this procedure
does not destroy the banding of the stiffness matrix.

Joint 4 (u,, is prescribed)

R04 = IZ
10 ] 0 0
B, = [o o] Ga [0 1]

uf = {0, Tiy,} pf = {Pa1, 0}

Joint 6 (ug, is prescribed)

1l ot
ROG:_
ﬁ[—l 1]
10 00
Es = =
¢ [o o] Go=1g

u¢ = {0,7g,} pé = {781, 0}

s s,:-.g«m%
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Initial matrices (A" and Py = —P,)
(uy) (1) (a3) (uy) (us) (ue)

'}{11 '%/12 9{13 9{14 9 —@0.1

Ky K 23 K 4 ~Po,2

H 33 H s H 35 A 36 =P,3

')chl %/.45 %46 “?0,4

Sym H'ss Hse =Po.s

| H e -Po.s

Final matrices (A"* and 22%)

(ug) | (uz)| (u3) (uy) (us) (ug)
Ayl 0 | A A LE, =P FPr—H U — A 4uf
1]
Lo o i,
Haz| H3aBy | 35 | A 36(EgRY)T —Po. 3= H J3l; — H 34uf

06, T
— A 36RY Tuf +p,y

Eof aEq | EuH g5 | By yo(EROS)T B~ Py, 4 — A L4lhy) ~ Eukl aait
+G, + i+ ul - Bl RO Ty

Sym. Hss H 56(ER)T =Py s~ H i}

+ps— A 5RO Tu

(EGR%)J{M(EGRO(’)T EeR%(~ 2, 6= A heu]
+Gyg — A 66RO TuZ) +p¥ +u¥

8-4. INCREMENTAL FORMULATION; CLASSICAL STABILITY
CRITERION

Equations (8-13), (8-22) are valid for both lincar and nonlinear behavior.
However, it is more efficient with respect to computational effort to employ
an incremental formulation when the system is nonlinear. With an incremental
formulation, one applies the load in increments and determines the corre-
sponding incremental displacements. The total displacement is obtained by
summing the displacement increments. An incremental ioading procedure can
also be used with (8—13) but, in this case, one is working with total displacement
rather than with incremental displacement. In this section, we develop a set of
equations relating the incitemental external load and the resulting incremental
displacements. These equations are also nonlinear, but if one works with small
load increments, the equations can be linearized. Our approach will be
similar to that followed previously. We first establish incremental member
force-displacement relations and then apply the direct stiffness method to
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generate the incremental system equations. We complete the section with a
discussion of the classical stability criterion. o .

We start with (8-4), which defines the external joint forces required to
equilibrate the action of the force for bar n,

Pn, = F, BZ

Equations (a) are satisfied at an equilibrium position. We suppose an in-
cremental external load AP is applied and define AU as the resulting incremental
displacement for the new equilibrium position. Since I and B erend on U,
their values will change. Letting AF, AP be the total increments in F, due' to
AU, and requiring (a) to be satisfied at both positions, leads to the following
incremental force-equilibrium equations:

Apn, = F, ABY + AF.BT + AF, ABT
Apn_ = —‘Apﬂ+

Pm = ”p’lq» (a)

(8-24)

To proceed further, we need to evaluate the increments in e and §. The exact
relations are given by (6-22):

ey = ocn(u,,+ - un-) + %(Bn - d,,)(ll,,(, - un-) (a)

b= 30 = G0, — )

To allow for the possibility of retaining only certain nonlinear terms, we write
(a) as

(“m - U‘)Tgn

Uy, ~ U ) + %(u'u - “n-)’rgn(“m - U,)
Yn(un+ - ll,,_)

Bn - o, =
. en

(8-25)

i

If all the nonlinear terms are retained,
1
TED e ]i
BT
To neglect a particular displacement component, we delete the gorresponding
element in I;. For geometrically linear behavior, g, = 0. Operating on (3-25),

we obtain

AB, = dp, = (Au,, — Au, )'g, (8-26)
and
Aen = den + %_dle"
de, = BAu,, — Au,) (8-27)

d*e, = dB,(Au,, — Au, )

It remains to evaluate AF,. We allow for a piecewise linear material and
employ the relationst developed in Sec. 6-4. For convenience, we drop all the

# See (6-31), (6-32), and (6-33).

e S

¢
4
é
{]
4
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notation pertaining to a segment and write the “generalized” incremental
expression in the simple form ‘

AF = k(Ae — Aeg) (8-28)

where k, Aey are constant for a segment. They have to be changed if the limit
of the segment is exceeded or the bar is unloading. Since Ae is unknown, one
has to iterate, taking the values of k, Ae, corresponding to the initial equilibrium
position as the first estimate. This is equivalent to using the tangent stiffness.
The initial elongation, Aey, is included to allow for an incremental temperature
change. Substituting for Ae, (8-28) takes the form

AF, = AF, , + k,de, + 3k, d?e,

(8-29)
AFo,, = —k, Aeo,,

Finally, we substitute for AF,, AB, in (8 ~24) and group the terms as follows:

Apy, = ki, (A, — Au, ) + Apo , + Ap,,, (8~30)
Ap,,_ = “Apru
where ‘
kt, n = L'n@n + knBuTﬁn
Apo,n = AFo BT (8-31)

Apg,n = k(= Aeo,n dBY + 1d’e,BY + de, dBF + 4d?e, dBT)

We interpret k, as the tangent stiffness matrix. The vector, Apy, contains linear,
quadratic, and cubic terms in Au. We have included the subscript g to indicate
that it is a nonlincar geometric term.

We write the total set of incremental joint equilibrium equations as

AP = H AU + AP, + AP, (8-32)

where 7, is assembled using (8-9) and A2, + A%, with (8-8). Note that
A, is symmetrical. Finally, we introduce the displacement restraints by ap-
plying (8-19)—(8—21). The modified equations are ,

HE AU = AP* — AP§ — APY (8-33)

It is convenient to include the prescribed incremental support displacement
terms in AZ* so that A2§ involves only the incremental temperature and
AP the variable displacement increments. The contracted equations are

K., 11 AU, = AP, — AP, , — AP, ; — K, 1, AT, (8-34)

where K,, 1, is symmetrical.

We cannot solve (8-33) directly for A% since AP} contains quadratic and
cubic terms in A%. There are a number of techniques for solving nonlinear
algebraic equations.t We describe here the method of successive substitutions,

T See Ref. 12.
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which is the easiest to implement, but its convergence rate is slower in com-
parison to most of the other methods.{

First, we note that 7% AP* and AZ¥ are independent of A%. They de-
pend only on the initial equilibrium position and the incremental loading. We
combine AP* and AZ2¥ and write (8-33) as

HEAU = AP — AP} (8-35)

Now, we let A%™ represent the nth estimate for A%’ and determine the
(n + 1)th estimate by solving

HEAUTY = APE — APE|awo (8-36)

The iteration involves only evaluation of A%} and back-substitution once A *
is transformed to a triangular matrix. The factor method is particularly con-
venient since A is symmetrical. With this method,

A = STS (8-37)
where S is an upper triangular matrix. We replace (8-36) with

S AU"*Y = Q 6.39)
STQ = AP} — AP |san |

In linearized incremental analysis, we delete AZ?§ in (8-35) and take the

solution of

HENU = AP (8-39)
as the “actual” displacement increment. One can interpret this scheme as one
cycle successive substitution.

The solution degenerates when the tangent stiffness matrix becomes singular.
To investigate the behavior in the neighborhood of this point, we apply the
classical stability criterion developed in Sec. 7-6. The appropriate form for a
truss is given by (7-41):

m

EWy = 3 (F,d%, + dF,de,) > 0

n=1

for arbitrary AU, with AU, = 0 (a)

We have already evaluated the above terms. Using (8—26), (8—27), and (8-29)
with Aep = 0,

F, d%e, + dF,de, = (Au,, — Au, )"k, (Au,, — Au, ) (b)
and (a) can be written as
a*wy, = AUTK,, 1 AU; > 0 for arbitrary AU, (8-40)

It follows that K, ;; must be positive definite for a stable equilibrium position.

t Iterative techniques are discussed in greater detail in Secs. 18-7, 18-8, 18-9.
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But K, y; and '/ are related by
AF =T [10{’* " ﬂn (8-41)

where II is a nonsingular permutation matrix, which rearranges the elements
of A%’ according to

AU = 11 A%’ (8-42)
Then, ¥ and K, ;; have the same definiteness property.f F inally, we can
classify the stability of an equilibrium position in terms of the determinant of
the tangent stiffness matrix: i

D = 7| = K0

stable D>0

neutral D=0 (8-43)
unstable D <0

Example 8-5

We illustrate the application of both the total (8—13) and incremental (8-34) formulations
to the truss shown in Fig. E8=5A. To simplify the analysis, we suppose the material is
linearly elastic, k; = k, = k, and there arc no initial elongations or support movement.

Fig. EB—-5A
B b<<d 9
X, lP M1
‘ @ o= Pirutny T
X, f ) @ i
| e |
—d ! d—q
The initial direction cosines for the bars are
1
o = %[d b wm=pl-d -] @
The deformed geometric measures are defined by (8-25). They reduce to
vB'K = an + urg’l,
e, = YUy n=12 (b)

1.7,
Yo = O + 3ULE,

for this example. Since b « d, we can neglect the nonlinear terms due to u,,, i.e, we can

take (To o
gn“z[o J @

t See Prob. 2—13 for a proof.
I See Sec. 2-5.
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Using (c),
1
Y1 & f{d 1 =b + Sy
1 |
By %E[d Po=b o+ ug,]
(d)

1
T2 X ”Z[—d | —b + duy,]
1 f
B, %’E[’d =0+ uy,]
Continuing, the bar force-displacement relations are
F, = ke, = kyu, n=12 {e)
Finally, the force-equilibrium equation for joint 1 follows by applying (8-6) to both bars.

P = (ky + Kouy = BTy, + Blvom, 03]
Equations (¢) and (f) expand to

_ d\* |
P11 2k ) | 0 Uy
= |-t s m (g)
_ i 2k
P12 0 g F(b = )b~ ups)| | urs
t
and
k 1
Fy = ”I':(d“u — (b — Fupz)up,)
L (h)
Fy = ‘L‘(‘duu ~ (b~ Juyz)uy,)

The diagonal form of the coefficient matrix is due to the fact that we neglected u; in the
expressions for y and B. This approximation uncouples the equations. Note that (g) is
the first equation in (8—13) with U, and Py, set to 0.

Solving the first equation? in (g), we obtain

I ACE .
Uy =5i\7 Pu (1)
The corresponding bar forces are
1/L
Fy = 3 <‘2) P1s
F, = —F, @

This result is actually the solution for the linear geometric case.
The expression for u, , and the corresponding bar forces follow from the second equation
in (g).

2k
Piz = [Z} (b — w )b — %“12)] Upz (k)

1 Equation (g) is (8—1) with F; = 0.
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k 1 7
Fi=F,=——(b-3% = 12
1 2 2 { F7P) 2P 35w, M
We can write (k) as L
R S Jt
TR~ )~ Juny (w

and solve (m) by iteration. Alternatively, one can specify u,, and evaluate p,, from (k).
The latter approach works only when there is one variable. The solution is plotted in
Fig. E8-5B.

Py Fig. E8-5B

We} describe next the generation of the incremental equations which follow from (8-26)-
(8~32). Applying (8~26), (8-27) to (b)-(d) results in

Apn = dﬁn = Au{gn = [O A'f’ilj:}
1
de, = B, Au; = o,y Auy, + ‘L‘(*b + ty5)Auy,
; 1

dzen == Allfg,, Aul = “E(Aull)z (n)
Opp = + = = d

ni — L “rfz - 'L

n=172

We arc assuming no initial elongation. Then,
AF, = k Ae, = k(de, + id%,) (0)

The tangent stiffness matrix and incremental geometric load term are defined by (8-31).
Using (n), we obtain

’ n
ko2, i"i—l(-b +i3)
ki n = k 5 F, (p)
Symo (b 4w + 7
%,
o (Buy)?
Ap, , = kd-= (@

o, Auy,\* Au,,\?
‘L—lA“u Augy + %(’”Lﬁ‘) (=b + uy,) + $Auy, (___;_2)
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Finally, we assemble the incremental equilibrium equations for joint 1 using (8-30).
Ap; = (k1 + Kk, )Auy + Ap, ¢ + Ap, 63
{
d 2
2k (z) [¢] Au“
2k 1
0 "EZ"(-—b -+ u12)2 + —E(Fl + F,) ) Auy, (S)
Apy, 0

— Auyy\?
Apy2 k L [3(—b + uy,) + Auy,]

Note that (s) is (8—34). Also, the incremental equations are uncoupled.
We restrict the analysis to only p;, loading. Setting F; = F, in (s) results in

2 k ) B Auy, \?
T F +Z‘(‘b +ua)* ) | Qg = APy, — k L [Aup + 3(=b +u0)] (O

where F is determined from (e). The coefficient of Au,, is the tangent stiffness with respect
to uy,.

d[),l 2 2 k
Tl B - 2
dn, L + L( b+ uy,) (u)
Applying the classical stability criterion (8--43) to (t), we see that
i >0  stable
[£
iz 0 neutral (v)
duy,

<0 unstable

Points A, B are stability transition points and the segment 4-B is unstable.
If k = O, the truss is neutral with respect to Auy,. Now there is a discontinuity in k

at F = —F,,, the pin-ended Euler load, when the material is linearly elastic:
AE
IF , < F eb k = I‘
F = -'Feb k=0 (W)
n*EI,
o=

To determine whether the members buckle before point A is reached, we compare F 4

with — F,,. Using (u),
AE
Fy= — = =b+uy,

Iz ()

2 AEV?
. 3L

Then, for system instability rather than member instability to occur, b must satisfy

3P\
b < <—~A—3> = ﬁnp ()

where p is the radius of gyration of the section.
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Lastly, we outline how one applies the method of successive substitution to (t). For
convenience, we drop the subscripts and write (t) as

k,Au = Ap — Ap, (z)
In the first step, we take Ap, = 0.
AT .
At = 2F (aa)
ky

The second estimate is determined from

1
Au® = k—(Ap‘ — Ap{") (bb)

(3

Generalizing (bb),
1
Au(n+1) - 7(__ (Aﬁ _ AP;")) (CC)
t

The convergence is illustrated in Fig. E8-5C. Case (b) shows how the scheme diverges

Fig. E8-5C
Ap
ky
1
—A
Ap __.Apg(l) Ap — Ap, Q@ Pg
N e
Ap & — — —
HE
Pt
iy
e Au
SN N '

Au ® Au @ Atdexact

Au® 2u®  Au®

(b)

in the vicinity of a neutral point (k, = 0). Convergence generally degenerates as k, » 0
and one has to resort to an alternate method.
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8-5. LINEARIZED STABILITY ANALYSIS -

In the previous section, we illustrated the behavior of a geometrically non-
linear system. The analysis involves first solving the nonlinear equilibrium
equations for the displacements and then applying the classical stability crite-
rion to determine the stability of a particular equilibrium position. Once the
nonlinear equilibrium equations are solved, the stability can be readily deter-
mined. Now, if a geometrically nonlinear system is loaded in such a way that
it behaves as if it were geometrically linear, we can neglect the displacement
terms in K, ;;, that is, we can take p = o in the expression for k,. This ap-
proximation is quite convenient since we have only to solve the linear problem
in order to apply the stability criterion. We refer to this procedure as linearized
stability analysis.

According to (8—40), an equilibrium position is stable (neutral, unstable)
when the tangent stiffness matrix is positive definite (positive semi-definite, in-
different). We generate 7, transform to 7% and test A for positive defi-
niteness. We have shown that ¢ * and K,, ;; have the samc definiteness prop-
erty, i.e, K., 1, is positive definite if 57 is positive definite. Working with A
rather than K, ;; avoids having to permute the rows and columns.

In linearized stability analysis, we approximate k,, , with

kt,n = kna;lx-dn + ann (8—44)

The first term is the linear stiffness matrix. We interpret the second term as a
geometric stiffness. The bar forces are determined from a linear analysis of
the truss. If the loading is defined in terms of a single load parameter, 4, we
can write (8—44) as
Fll = lPl! (8_45)
kew =kew + 7k,

The tangent stiffness matrix is generated by applying the Direct Stiffness Method
to each term in (8-45). We express the actual and modified matrices as

K1 =Ko + Ky 11 (8-46)
and
HE = HF + AAHF (8-47)

where K, is the system stiffness matrix for linear behavior. It is symmetrical
and positive definite when the system is initially stable. The geometrical stiff-
ness, K, is also symmetrical but it may not be positive definite.

Equation (8—46) shows that the tangent stiffness matrix varies linearly with
the load parameter. If the system is initially stable, K, i, is positive definite
for 2 = 0. As 1 is increased, a transition from stable to neutral equilibrium
may occur at some load level, say 1.,. To determine /_,, we note that neutral
equilibrium (see (8-43)) corresponds to |K;, ;| = 0 which, in turn, can be
interpreted as the existence of a non-trivial solution of

Kt‘ 11 AUl =0 (a)
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Substituting for K;, 1 transforms (a) to a characteristic value problem,

K(, 11 AU1 = —},Kg, 11 AUI (8‘*48)
and 4., is the smallest eigenvaluet of (8-48).
Since |K,, 11| = |#7¥|, we can work with
HEANU =0
i
H*NU = —AHF AU’ (8—49)
instead of (8-48). Both equations lead to the same value of /.. However,
(8~49) has r additional characteristic values equal to — 1 since we have added
r dummy equations. To show this, we substitute for 4 using (8-41) and
note (8-42).
K 0| (AU K 0 | (AU
T t, 11 e _ T g, 11 _1
R B e B [ B
Premultiplying by I = (IT")"*, (a) becomes
KL 11 AUl = *‘AKQ i1 AU; (nd CqS.) (b)
AU, = -1 AU, (r egs.) - ©
The solution of (c) is
11212:‘—"‘=/1,= -1
1 0 0
A e O oA b @
o) o i

This solution must be disregarded since AU, is actually a null matrix.

Example 8-6

Consider the system shown. We suppose the bars arc identical, the material is linearly

elastic, and there is no support movement.
The geometry change is negligible under a vertical load and we can usc the linearized

stability criterion. Working with the undeformed geometry, we have

L
Fi=F,=—=]
2b
L (a)
Fo=F, = ——
1 2 zb

t Matrix iteration (Ref. 1) is a convenient computational scheme for determining 4,.. We apply
it to .

’ 1
(‘Kg, 18U, = <j> Ke g AU,

which satisfies the restrictions on the method.
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Fig. E8-6

We let k, = k, = k. The system stiffness matrices follow from (8-44) and (8—45).

Ko 1y = key + ke o = koo + ajo)

= 2k
0

and

ag

%)

L
Ky =Kgp + ko= — (8 + g2,)

2b

It remains to determine g, and g, which are defined by
B. = o, + uig,

We neglect u,, in the general expression for §,. This is reasonable when d < b. The
approximate expressions for p, and g, are

Finally,

and

K, i1 =K1 + Ky 1y

= 2k —4

©

@

—b]
(®
()
.bl. 0
(&
0 0
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Neutral equilibrium (K, {, is semidefinite) occurs at

d\* 24Eb[d\?
., = - = e | h

Note that (g) has only one eigenvalue instead of two. This is a consequence of our using
approximate expressions for Equations (e) instead of the exact expressions. At 1 = A,
the system is neutral with respect to Au, y, i.e., the buckling mode is antisymmetric.

Neutral equilibrium also occurs when the bars either buckle or yield. The value of 1
for Euler buckling of the bars is

2b 2b [72EI]  2AEb [np\?
’s'cre':—Fe =T {73 | = Vv i
e T L[Lz] L(L) - @)
Comparing (h) and (i), we see that Euler buckling of the bars controls when
d > np 9]
The exact expression for g, is
1
gn = i I; (k)
If we work with (k),
1
Ko 11 = ““Blz ’ M

and

T -

(&)
L

b\? =2 1 (m)
0 (7;> b

In this case, therc are two characteristic values and thercfore two critical values of 1.

d 2
her, 1 = 2kb | —
fer, 1 < <L>

B\ B\,
Z'cr.2=2kb (Z) =<Zi‘> /'*cr,l

The second root corresponds to neutral equilibrium with respect to Auy,. For this example,
d « b, and the first root defines the critical load.

It is of interest to compare 1., , with the buckling load found in Example 8-5. There
we considered d » b and followed the nonlinear behavior up to the point at which the
slope of the p;, —u;, curve vanished (neutral with respect to Auy,):

J3

= "? Acr‘ 2 (0)

K1 = K 10 + 2K 1 =2k

<
|

(n)

max

The linearized result is significantly higher than the true buckling load. In general, the
linear buckling load is an upper bound. How close it is to the actual value will depend on
the geometry and loading. Whend « b, it is quite close, while it considerably overestimates
the true load for d >» b.
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PROBLEMS

8-1. Consider U, and P, to be prescribed and the behavior to be physically
linear.
(a) ExpressIlp = Vy — P{U, in terms of U, U,. Use

Vr = ‘Zl zkie; — eq, ;) = 3(e — eg)"kle — ¢)
i=

(b) Show that (8—1) are the Euler equations for ITp(U,). Note that
dVT = }TT de de = BT AU1

(c) Express d’Il, as a quadratic form in AU,. Hint: Obtain d%e by
operating on (7-8).
8-2. For the structure sketched:
(a) Determine K.
(b) Determine u; and F due to a temperature increase of 100°F for all
the bars. Assume no support movements at joints 2, 3, 4.
8-3. For the structure sketched:
Determine the displacements, bar forces, and reactions.
8-4. Refer to Example 8-2. Suppose we number the joints as shown.
Develop the general form of # and compare with the result of Example 8-2.

8-5. For the structure sketched, determine (ES—> A
. a
8-6. For the structure sketched:
Develop the general form of #*. Indicate how you would obtain K 13-

PROBLEMS 205
Prob. 8—2
X
E=3X 10* ksi
Bar areas = 3 in.?
Coefficient of
thermal expansion =
6 X 107%°F
Prob. 8-3
E=3X10%ksi
Initial elongation of bar @ = :-2%1 .
@ Horizontal displacement of joint 2 = %in, to the left
15
15’

Xy

Prob. 8-4

DA
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Prob. 8-5

E constant for all bars

Bar  Area
1 3a
2 4q
13 3 3a
/ 4 4a
4 5 2.5q

%<§ Prob. 8-6

N
/

e g

S

P

8-7. Determine the load-deflection relation for the system shown. Consider
the material to be linearly elastic and the bars to be identical. Assume no initial
elongation or support movement.

8-8. Investigate the elastic stability of the system shown. Assume the
material is linearly elastic and no support movements. Use the linearized
stability criterion and work with the exact expression for g, Rework the
problem, considering d « b and using the corresponding approximate expres-

sion for g,.

8-9. Determine the lowest critical load for the truss shown. Assume the
material 1s linearly elastic and all bars have the same stiffness.

X,

Prob. 8-7

d<<b
]\1 —/\’z =AfE
Xy
X2
A

Xy
L
/ O
N
i
P
\
20

Prob. 8-8

Prob. 8-9
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8-10. The governing equations for geometrically nonlinear behavior of a
linearly elastic discrete system such as a truss are nonlinear algebraic equations
containing up to third-degree displacement terms. We have expressed them as

P =Py + KU = Py + BhAU @)

where <7, % contain linear displacement terms. This form is dictated by our
choice of matrix notation. In order to expand (a), we must shift from matrix
to indicial notation.

For convenience, we employ the summation convention. If a subscript is
repeated in a term, it is understood the term is summed over the range of the
repeated subscript. An example is

n

agh; = 5. a;b;

J7
Jj=1

G=12....m ()

We write the ith equilibrium equation for the system as (this representation
is suggested in Ref. 8-10):

(KU + K”kUk -+ Kijk((/rkU()Uj = /:p, - -PO.i (C)

where i, j, k, £ range over the total number of unknowns, U is the total value
of the jth displacement unknown, 4 is a load parameter, P; defines the load
distribution, and the K's are constants which can be interpreted as second-,
third, and fourth-order tensors. The second-order tensor, K;;, is the linear
stiffness matrix.

(a) We generate the system tensors by superimposing the contribution of
each bar. The first step involves converting the matrix expressions

Pun, = Bth: Pi. = —Pu. (d)
where
Fn = knen + FO,n

Y"(ull+ - unm) (B)

i

€y

L T
Yn = al, + EIZ (uru - un~)

1 ;
ﬁn = 0Oy + E("lu - uru)r

over to indicial form. We drop the n subscript, define p and u as

— pﬂ+ — u"+
P {P} tT {u} ®

and write (d) in the form

pi = oy + ki + ki ettt )ty + Po, s ®

(b)

©
8-11.

(@)

(b)
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Show that
kij = ko‘s'y'rcsicrj
k- "
kijk = E [Csicrj(icrkas + cskar)] (h)
k
Kijie = 3Lz CsiCstCriCric

where ¢ is defined by
I o 0

Discuss how you would locate the appropriate addresses for the bar
stiffness tensors in the system tensors. What symmectry properties do
the ks exhibit? Do these properties also apply for the system tensors?
ge\;eol;)p the incremental equations relating Au, A4 and compare with
Specialize the incremental equations for lincarized stability analysis.
For the structure sketched:

Prob. 8-11

D2,
JARLS]

}Linearly elastic material.

No support movement or

initial elongation.
kl =ky = k

}‘ b

|
-

Determine the nonlinear incremental equilibrium equations at the equi-
hl:grmm position corresponding to p; = 0, py = p, .. the linearized
critical load. '

Take Ap, = 0 and solve for Ap, as a function of Au,. Comment on
how the system behaves when a small horizontal load, p;, = +ép,, is
applied in addition to p,. ‘ T



