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II SEC. 7-2. PRINCIPLE OF VIRTUAL DISPLACEMENTS 

use these principles, particularly the principle of virtual forces, to construct 
i approximate formulations for a member. 
i 

I 7-2. PRINCIPLE OF VIRTUAL DISPLACEMENTS 
I 

The principle of virtual displacements is basically an alternate statement of 
force equilibrium. We will establish its form by treating first a single particle
and then extending the result to a system of particles interconnected with 

i. internal restraints. The principle utilizes the concept of incremental work and, 
for completeness, we review briefly the definition of work before starting with
the derivation. 

Let v be the displacement of the point of application of a force F in the 

i 
direction of F. The work done by F (see Fig. 7-1) is defined as 

W= Wo+ Fdv= W(v) (7-1)11
where v0 is an arbitrary reference displacement. Since W is a function of v,
the increment in W due to an increment Av can be expressed in terms of the 
differentials of W when F is a continuous function of v: 

7 
Variational Principles 

for an Ideal Truss 

7-1. GENERAL I 

The formulation of the governing equations for an ideal truss described 
in Chapter 6 involved three steps: 

1. The elongation of a bar was related to the translations of the joints at 
the end of the bar. 

2. Next, the bar force was expressed in terms of the elongation and then in 
terms of the joint translations. 

3. Finally, the equilibrium conditions for the joints were enforced, re­
sulting in equations relating the external joint loads and internal bar 
forces. 

The system equations were obtained by generalizing the member force­
displacement and joint force equilibrium equations and required defining only 
two additional transformation matrices (, ,.). Later, in Chapter 10, we shall 
follow essentially the same approach to establish the governing equations for 
an elastic solid. 

In this chapter, we develop two variational principles and illustrate their 
application to an ideal truss. The principle of virtual displacements is treated Ifirst. This principle is just an alternate statement of force equilibrium. Next, 
we discuss the principle of virtual forces and show that it is basically a geo­
metrical compatibility relation. Both principles are then identified as the sta­
tionary requirements for certain functions. For this step, we utilize the material 
presented in Chapter 3, which treats relative extremas of a function. Finally, 
we discuss the question of stability of an elastic system and develop the stability 
criterion for an ideal truss. 

Why bother with variational principles when the derivation of the governing
equations for an ideal truss is straightforward? Our objective in discussing
them at this time is primarily to expose the reader to this point of view. Also, 
we can illustrate these principles quite easily with the truss. Later, we shall 

AW= dW + 

dW = dW 
d 

d2 W = (dW)= 

We refer to dW as the first-order work. 

d2W + 

Av 
dF (7-2) 

(L)2y(v) 

Similarly, we call d2 W the second­
order work. If dF/dv is discontinuous, as in inelastic behavior, we must use 
the value of dF/dv corresponding to the sense of Av. This is illustrated in 

F 

I -
I I 

Vo u 

Fig. 7-1. Work integral for the one-dimensional force-displacement relation. 

t Differential notation is introduced in Sec. 3-1. 
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Fig. 7-2. We use dF/dv = k, for Auv > 0, and dF/dv = -k 2 for Au < 0.Note that W is not a single-valued function of v when there is a reversal in the 
F-v curve. 
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Fig. 7-2. Work integral for direction-dependent force. 

We consider first a single mass particle subjected to a system of forces (seeFig. 7-3). Let R be the resultant force vector. By definition, the particle is inequilibrium when R = 0. We visualize the particle experiencing a displacementincrement A from the initial position. The first-order work is t 
dW = Aii (7-3)

If the initial position is an equilibrium position, dW = 0 for arbitrary Au sinceR = . Therefore, an alternate statement of the equilibrium requirement is: 
The first-order work is zero for an arbitrary displacement

of a particle from an equilibrium position. (7-4) 

The incremental displacement Aii is called a virtual displacement; this state­ment is the definition of the principle of virtual displacements. 

+ AR 

Fig. 7-3. Virtual displacement of a single mass particle. 

One can readily generalize (7-4) for the case of S particles. Let dWq be thefirst-order work associated with the forces acting on particle q and A the 
t We consider the forces to be continuous functions of A. 

SEC. 7-2. PRINCIPLE OF VIRTUAL DISPLACEMENTS 

corresponding virtual-displacement vector. If particle q is in equilibrium,
dW = 0 for arbitrary Aiq. It follows that the scalar force-equilibrium equationsfor the system are equivalent to the general requirement, 

S 

dW = dW, = for arbitrary Aqd
=I'= 

(7-5)q = 1,2,...,S 
Equation (7-5) is the definition of the principle of virtual work for a systemof particles. 

In general, some of the forces acting on the particles will be due to internal
restraints. We define dE as the first-order work done by the external forcesand dW, as the work done by the internal restraint forces acting oni the particles.
Substituting for dW, (7-5)becomes 

dWE + dW = 0 for arbitrary Aq 
q = 1,2,... S (a) 

Now, let dW be the work done by the internal restraint forces acting onthe restraints. We use the subscript D for this term since it involves the 

A I 
112k --

F, (Deformed) 

F'~1 ~~~~-~~~Ai~~~F 
FXT 

- ..... L\/\/\ -( F 

(Initial) 

0* F0 
(Deformed) 

F 'F 
Au 1t __~~- Au 2 

Fig. 7-4. Work done on the mass particles and internal restraints. 

deformation of the restraints. The restraint force acting on a particle is equal in
magnitude, but opposite in sense, to the reaction of the particle on the restraint.Since the points of application coincide, it follows that 

dWd = -dW, (b)
As an illustration, consider the simple system shown in Fig. 7-4. For thiscase, we have 

dWD = -F t At + F 1 AU2 

dW = F1 Au - 1F Au2 
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Using (b), we can write (a) as: 

dWE = dWD for arbitrary Aiq 
(7-6) 

Also, the general principle of virtual displacements can be expressed as follows: 

The first-order work done by the external forces is equal to the 
first-order work done by the internal forces acting on the restraints 
for any arbitrary virtual displacement of a system of particles from an 
equilibrium position. 

We emphasize again that (7-6) is just an alternate statement of the force 
equilibrium conditions for the system. Some authors refer to (7-6) as the 
work equation. 

To apply the principle of virtual displacements to an ideal truss, we con­
sider the joints to be mass points and the bars to be internal restraints. We 
have defined # and tl as the column matrices of external joint loads and 
corresponding joint displacements. Then, 

dWE = MpT Al (a) 

where At contains the virtual joint displacements. The first-order work done 
by the restraint forces acting on bar n due to the virtual displacements is t-

(dW9) = F,, den (b) 
Generalizing (b), we have 

dWD = FT de (c) 

Finally, the work equation for an ideal truss has the form 

l'7At- = FT de for arbitrary A0t (7-7) 

The scalar force-equilibrium equations are obtained by substituting for de in 
terms of Aa. 

It is convenient to first establish the expression for the differential elongation 
of an individual bar and then assemble de. Operating on e,, 

-1-) 
+e. = a - (U,,+ ._) (U+ - u_)r(u.+ - U,_) 

and noting the definition of P,, (see (6-22)), we obtain 
1 

den = [n + -Ln (u
+ - Un )T] (AUn+ - Au,,_) 

= L(Au.n -+ AU,,_) (7-8) 

t Wd = Je, F,, de, = Wd(e.). We must use the rules for forming the differentials of a compound 
function since en depends on the joint displacements. Using (3-17), we can write 

dW = de,, = F,, de,
den 

dF. 2d2Wd = d(F. de,,) = _ (de,) 
2 + 

F, d e,,
den 
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The assembled form follows from (6-25). We just have to replace 'y,with P,: 

de = _Vr AV (7-9)
Substituting for de in (7-7), 

y.T A/ = F- T 
At (a) 

and requiring (a) to be satisfied for arbitrary Aol results in the joint force 
force equilibrium equations. 

For the geometrically linear case, e = c1W where a is constant and de = 
v/ Ati follows directly from e. We have treated the geometrically nonlinear 
case here to show that the principle of virtual displacements leads to force­
equilibrium equations which are consistent with the geometrical assumptions 
associated with the deformation-displacement relations. 

Example 7-1 

We consider a rigid member subjected to a prescribed force, P, and reactions R1, R2, 
as in the diagram. There is no internal work since the body is rigid. Introducing the virtual 

Fig. E7-1 
I - - I 

I~~~~~~~~~~~~~-~~~~~I 

All I 

I
III

IAu 2 
atup I 

I 

i P 

displacements shown above, and evaluating the first-order work, 

dW = dW = R1 Aul + R2 Au 2 - P Au (a) 
Now, Aup is not independent: 

Aup = Au, (1- ) + Au2 (L) (b) 
Then, 

dW = Au {R - P (1-) + Au 2 {R - ( 0 (c) 

Requiring (c)to be satisfied for arbitrary Atr,, Au2 leads to 

R= P (1-) 

d (d) 
R2 = P-

L 

which are the force and moment equilibrium equations, in that order. 
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-
_ _ _ ._ .

Example 7-2
e 

We consider the outside bars to be rigid (see sketch). To obtain the force equilibrium 
equation relating P and the internal bar forces F1, F2, we introduce a virtual displacement, 
Au,, of the point of application of P: 

dWE = P Au 

dW = F de + F2 de2 
(a) 

The first-order increments in the elongations are 

de1 = Aut cos 0 de2 = -Au 2 cos 0 = -Aul cos 0 
(b) 

where 0 defines the initial position. Then, equating dW, and dW0, 

dWE = dWD for arbitrary Au1 
(c) 

P = (F - F2) cos 

The force in bar 3 does not appear explicitly in the equilibrium equation, (c). It is possible 

Fig. E7-2 

I 

Bars 3, 4, 5, 6 are rigid 

to include F3 even though bar 3 is rigid by treating it as a Lagrange multiplier.t We 

consider Au2 as independent in the work equation: 

P Au - (F1 cos 0)Aul + (F2 cos 0)Au 2 = 0 (d) 

Now, 
Au, - A 2 = 0 (e) 

Multiplying the constraint relation by - , adding the result to (d), and collecting terms, we 
obtain 

Au(P - F1 cos 0 - 2) + Au2(F2 cos 0 + A) = 0 (f) 

Finally, we require (f) to be satisfied for arbitrary Aut and Au 2. The equilibrium equations 

t See Sec. 3-3. 
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are 
P = F, cos 0 + 

F2 cos 6 + ) = O (g) 

and we recognize 2 as the force in bar 3. 

7-3. PRINCIPLE OF VIRTUAL FORCES 

The principle of virtual forces is basically an alternate statement of geo­

metrical compatibility. We develop it here by operating on the elongation­

joint displacement relations. Later, in Chapter 10, we generalize the principle. 
for a three-dimensional solid and describe an alternate derivation. 

We restrict this discussion to geometric linearity. The governing equations 
are 

= . F (a) 
e = t/ = l"/ (b) 

Now, we visualize a set of bar forces AF, and joint loads, A.t, which satisfy 
the force-equilibrium equations: 

Ad = ,@ AF (c) 

A force system which satisfies the equations of static equilibrium is said to be 
staticallypermissible. Equation (b) relates the actual elongations and joint dis­
placements. If we multiply the equation for ek by AFk, sum over the bars, and 
note (c), we obtain the result 

AFTe = AFT(,!TI) 

= A re/T 
(d) 

which is the definition of the principle of virtual forces: 

The actual elongations and joint displacements satisfy the condition 

AFTe - A?)Tq = 0 (7-10) 

for any statically permissible system of bar forces and joint loads. 

The principle of virtual forces is independent of material behavior but is 

restricted to the geometrically linear case. The statically permissible system 

(AF, A.S) is called a virtual-force system. 
To illustrate the application of this principle, we express q/ and Ad in 

partitioned form, 

II =:> = U &9 - P = A, (a) 

where U2 contains the prescribed support movements. Using (a), (7-10) takes 
the form: 

AFTe - AP2 2 =-- AP UI (b) 
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If the elongations are known, we can determine the unknown displacements 
by specializing AP1. To determine a particular displacement component, say 

To determine the translation, u, we select a statically determinate force system consisting 
ofa unit force in the direction ofu and a set ofbar forces and reactions required to equilibrate 

Uki, we generate a force system consisting of a unit value of Pkj and a set of bar the force. One possible choice is shown in Fig. E7-3B. Evaluating (7-12) leads to 
forces and reactions which equilibrate Pkj = 1. i 

AF = 

AP2 = 

F pkj=1 

P2 IPk = 1 
(7-11) 

., 
u = + 7, - tan 0(d - 72) 

cos 0 

This truss is statically indeterminate to the first degree. A convenient choice of force 

The internal bar forces and reactions are obtain from an equilibrium analysis 
redundant is one of the diagonal bar forces, say F2. The equation which determines F2 is 

of a statically determinate structure. Since only 

APT U1 (1)Ukj 

one element of AP1 is finite, 

(c) 
0 I Fig. E7-3B 

and (b) reduces to 
Ukj = eTFpkj = - U2 TP 2 Ipj= (7-12) 

The principle of virtual forces is also used to establish geometric compati­
bility relations required in the force method which is discussed in Chapters 
9 and 17. We outline the approach here for completeness. One works with 
self-equilibrating virtual-force systems, i.e., statically permissible force systems 
which involve only bar forces and reactions. 

By definition, a self-equilibrating force system F*, P* satisfies 

For this case, (b) reduces to 

B1F* 

P 

= 

= 

P = 0 

B2F* 
(7-13) 

derived from the geometric compatibility relation, which, in turn, is obtained by taking 
a self-equilibrating force system consisting of F2 = + I and a set of bar forces and reactions 

eC AF - U2 AP 2 = 0 (7-14) 
required for equilibrium. The forces are shown in Fig. E7-3C. 

Equation (7-14) represents a restriction 
geometric compatibility equation. 

on the elongations and is called a 
- cos 0 

Fig. E7-3C 

X1 +1 
Example 7-3 

The truss shown (Fig. E7-3A) has support movements (, 32, 3,)and is subjected to a 
sin 0 -sin 0 

loading which results in elongations (el, e2) in the diagonal bars. We are considering the 
outside bars to be rigid. 

O--· eS 0 
Fig. E7-3A 

I t!,P . . 
0 

, 
0 

Evaluating (7-14), we obtain 
el + e2 = 0 (a) 

To show that (a) represents a geometrical compatibility requirement, we note that the 
elongation-displacement relations for the diagonal bars are 

el - u cos 0 e2 = -u cos 0 (b) 

Specifying e determines uland also e2. We could have arrived at Equation (a) starting 
from Equation (b) rather than (7-14). However, (7-14) is more convenient since it does 
not involve any algebraic manipulation. We discuss this topic in depth later in Chapter 9. 

Bars 3, 4, 5, 6 are rigid 
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7-4. STRAIN ENERGY; PRINCIPLE OF STATIONARY POTENTIAL total potential energy. It follows that the actual displacements, i.e., the dis-
ENERGY placements which satisfy the equilibrium equations, correspond to a stationary 

value of IeI.
In this section, we specialize the principle of virtual displacements for elastic It remains to discuss how one generates the strain-energy function. By

behavior and establish from it a variational principle for the joint displacements. definition,
We start with the general form developed in Sec. 7-2, dVT S dV (a) 

FT de = AT Aq for arbitrary AW (a) 
and 

dVj = F, dej (b) 
If we consider all the elements of ,') to be arbitrary, i.e., unrestrained, where Vj is the strain energy for barj. Since we are considering Vj to be a com­

de = XT AY (b) pound function of ej, Equation (b) is equivalent to 

dand (a) leads to the complete set of force-equilibrium equations in unpartitioned Ii Fj(ej) = Vj (7-19)
form, n__ 

t = F (c) That is, the strain energy function for a bar has the property that its derivative 

We can obtain the equation for P1 by rearranging (c) or by starting with the 
with respect to the elongation is the bar force expressed in terms of the elonga­

partitioned form of pTr AqW, 
tion. Finally, we can express Vj as 

TaA T 
=> PT'AU -= T AU 1 + PT A] (d)

"i V Jeo, j dej (7-20)
2 eon 

and noting that AU 2 = 0 since U2 is prescribed. The reduced form is 
where e is the initial elongation, i.e., the elongation not associated with the 
force. Actually, the lower limit can be taken arbitrarily. This choice corresponds 

FT de - PT AU 1 = 0 for arbitrary AU 1 (7-15) to taking Vj as the area between the F-e curve and the e axis, as shown in Fig.7-5. 
where now 

de = BT AU, + B A 2 => BR AU, 
tl 

In what follows, we will work with (7-15). 
Our objective is to interpret (7-15) as the stationary requirement for a 

function of U1. We consider F to be a function of e, where e = e(U 1). The form 
of F = F(e) depends on the material behavior. t We could express F in terms 
of U1 but it is more convenient to consider F as a compound function of e. The 
essential step involves defining a function, V = VT,(e), according to 

iFT de = Fi dej _=d V (7-16) 

With this definition, and letting 

ip = VT - PTU 1 = lI(U) (7-17) Fig. 7-5. Graphical representation of strain energy and complementary energy. 
we can write (7-15) as 

dFi = 0 for arbitrary AU 1 (7-18) We consider the linearly elastic case. Using (6-30), 

We call VT the total strain energy function and nIp the total potential energy. 5.1 Fj = cj(e - eo, j) (a) 
One should note that VT exists only when F is a continuoussingle-valuedfunction Then 
of e. This requirement is satisfied when the material is elastic. Vj = kj(ej - eo, j)2 (7-21) 

Equation (7-18) states that the joint force-equilibrium equations (P1 = B1 F) The total strain energy is obtained by summing over the bars. We can express
expressed in terms of the unknown displacements are the Euler equations for the VT as 

t See Sees. 6-4, 6-5. VT = X Vj-=(e - e) Tk(e - eo) (7-22) 
j=1 
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Finally, we substitute for e in terms of U1 , U2, using energy is 
VT = -(klel + k2 e2) (a)I
e = AIU 1 + A2U2 

(7-23) 
Substituting for the elongations in terms of the displacement, 

When the geometry is linear, A1, A2 are constant and Vr is a quadratic function. 
e = cos 0 e2 = - 2 cos 0 = - cos 0 (b)

1
If the geometry is nonlinear, VT is a fourth degree function of the displacements. results in 

Up to this point, we have shown that the displacements defining an equilib­ + k2)ul cos2 0 (c)VT = ½(k, 
rium position correspond to a stationary value of the potential energy function. and finally 
To determine the character (relative maximum, relative minimum, indifferent, li = (k1 + k)tu cos2 0 - P1 u1l (d) 

neutral) of the stationary point, we must examine the behavior of the second 
The first differential of l, is 

differential, d2 Jp, in the neighborhood of the stationary point. 
Operating on dri,,and noting that AP 1 = 0 leads to dn , {[(k, + k2)cos 2 0111 - P}Au1 (e) 

-d(d,) = d2 VT Requiring IIP to be stationary leads to the Euler equation,d2 Ip = 
(7-24) 

P, = [(k, + k2)
C OS 2 0]tlt (f)

d2 VT = (dFj dej + Fjd2 ej) 
J which is just the force-equilibrium equation 

The next step involves expressing d2 Va as a quadratic form in AU 1. We restrict P1 = (F - F2)cos0 (g) 

this discussion to linear behavior (both physical and geometrical). The general 
with the bar forces expressed in terms of the displacement using 

nonlinear case is discussed in Sec. 17.6 When the geometry is linear, we can 
operate directly on (7-23) to generate the differentials of e, F1 =ke, = ku1 cos 0 F2 = k2e2 = -k 2u1tcos 0 (h) 

de = A1 AU (a) 
The second differential of l, is 

2d2e = d2 l = [(k1 + k,)cos 0](Aul) 
2 

(i) 

since A1 is constant. When the material is linear, and we see that the solution, 

dF = k de (b) U = (Ik + k
P

2 

1 
)Cos

2 (j) 

where k is a diagonal matrix containing the stiffness factors (AE/L) for the bars. 
corresponds to an absolute minimum value of lI, when 0 0. The truss is initially unstable 

Then, d2 VT reduces to when 0 = 0. 
d2VT = dF' de = de'k cle (7-25) 

= AT(AIkA1 )AU1 

If de :- 0 for all nontrivial AU 1, d2VT is positive definite and the stationary 7-5. COMPLEMENTARY ENERGY; PRINCIPLE OF 

point is a relative minimum. This criterion is satisfied when the system is STATIONARY COMPLEMENTARY ENERGY 

initially stable, since de = 0 for AU 1 # 0 would require that The principle of virtual forces can be transformed to a variational principle 

A1 AU 1 = 0 (m equations in nd unknowns) (a) for the force redundants. We describe in this section how one effects the trans­

formation and utilize the principle later in Chapter 9. This discussion is 

have a nontrivial solution. But a nontrivial solution of (a) is possible only when restricted to linear geometry. 
r(A 1) < nd. However, A1 = Br for the geometrically linear case and r(BI) = nd We start with Equations (7-13) and (7-14), which we list below for con­
when the system is initially stable. Therefore, it follows that the displacements venience: 
defining the equilibrium position for a stable linear system correspond to an eT AF - U2AP2 = 0 (a) 
absolute minimum value of the potential energy. 

where AF, AP 2 represent a self-equilibrating force- system, i.e., they satisfy the 

Example 7-4 the following constraint relations: 

We establish the total potential energy function for the truss considered in Example 7-2. B1 AF = 0 (b) 

The strain AP 2 = B2 F (c)For convenience, we assume no initial elongation or support movement. 
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Our objective is to establish a function of F, whose Euler equations are (a) and 
(b). We cannot work only with (a) since F is not arbitrary but is constrained 
by the force-equilibrium equations, 

P = B1F (nd equations in m variables) (d) 

We interpret eT AF as the first differential of a function V = V(F), 

dV = eT AF = Y dV (7-26) 

and call V* the complementary energy function for bar j. By definition, 

ejFj)= ddFi Vj (7-27) 

That is, the complementary energy function for a bar has the property that its 
derivative with respect to the bar force is the elongation expressed in terms of 
the force. We express Vj* as 

VJ* A= eJ dF (7-28) 

This definition corresponds to taking VJ* as the area bounded by the F-e curve 
and the F axis as shown in Fig. 7-5. Also, the strain and complementary 
energy functions are related by 

V + V = Fje (7-29) 

When the material is linear elastic, 

e. = eo,j +.fjFj 
1

V = ejFj + ½ifjF2 (7-30) 
.r =erF + FTfF 

Next, we define Il, as: 
Ic = V- UrP2V 

(7-31) 
= V - UTB2F 

We call HII(F) the total complementary energy function. With these definitions, 
Equations (a), (b), and (c) can be interpreted as 

dr = 0 (e) 

subject to the constraint condition 

d(P 1 - B1F) = 0 (f) 
We can combine (e) and (f) into a single equation by introducing Lagrange 

multipliers. Following the procedure described in Sec. 3-3, we add to (7-31) 
the joint force equilibrium equations and write the result as: 

n1 = Il + (P - BF)Ta (7-32) 

where a = {, 2,., ,d contains the Lagrange multipliers. The Euler equa-

SEC. 7-5. COMPLEMENTARY ENERGY 

tions for HI'treating F and a as independent variables are 

dH = 0 for AF, At arbitrary 

f2e(F) = Bfa + BTU (7-33) 
B1F = P 

We recognize the first equation in (7-33) as the member force-displacement 
relation, and it follows that a = U. 

An alternate approach involves first solving the force-equilibrium equation,
",Ix ,-1· . ..

ta(). I nere are nd equations in m variables. Since B1 is of rank nd when the system 
is initially stable, we can solve for nd bar forces in terms of P1 and the remaining 
(m - ld) bar forces. One can also work with a combination of bar forces and 
reactions as force unknowns. We let 

q = m - n = number of redundant forces 
X = {X1, X2,..., Xq} = matrix of force redundants (7-34) 

and write the solution of the force-equilibrium equations as 

F = F + FX 

P2 = P2, 0 + P2,.,X 
(7-35) 

The force system corresponding to X is self-equilibrating, i.e., 

(B1Fx)X = 0 for arbitrary X (7-36) 
We substitute for F in (7-31) and transform Hl(F) to fl,(X). Then, 

rdIl(X) = eT AF - U2 AP 2 

= (eF,, - U2P 2, x)AX (g) 
and the Euler equations are 

eTF - P 2,x = 0 (7--37) 
Note that (7-37) is just a reduced form of (7-33). Also, we could have obtained 
this result by substituting directly in (a). 

Up to this point, we have shown that the force redundants which satisfy 
the geometric compatibility equations correspond to a stationary value of the 
total complementary energy. To investigate the character of the stationary 
point, we evaluate the second differential. Operating on (g), 

d2f, = deTFx AX = d2 V. (h) 
If d2 V7' is positive definite with regard to AX, the stationary point is a relative 
minimum. This requirement is satisfied for the linear elastic case. To show 
this, we note that 

de = f AF = fFx AX 
d2 V = Efj(AFj)2 AX T(FfF)AX ( 
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'. 
The Euler equation follows from (f):

Since f contains only positive elements, dV* is positive definite with regard to 1.
PAX provided that there does not exist a nontrivial solution of : e0,1 - e. 2 + f 

cos 0 
(.f + f2)X = 0 (h) 

F, AX = AF = O (j) 
Comparing (h) with (a) of Example 7-3, we see that the Euler equation for HII(X) is the 

For (j) to have a nontrivial solution, there must be at least one relation between geometric compatibility equation expressed in terms of the force redundant. 
the columns of Fx. But this would correspond to taking force redundants which 
are not independent, and the solution scheme would degenerate. Therefore, 
we can state that the actual force redundants correspond to an absolute mini- 7-6. STABILITY CRITERIA 
mum value of FcLfor the linear elastic case. i 

Section 6-9 dealt with initial stability, i.e., stability of a system under in­
finitesimal load. We showed there that initial stability is related to rigid body

Example 7-5 
motion. A system is said to be initially unstable when the displacement restraints 

We consider the truss treated in Example 7-3. It is statically indeterminate to the first are insufficient to prevent rigid body motion. In this section, we develop criteria 
degree with respect to the bars (statically determinate with respect to the reactions) and we for stability of a system under finite loading. If a linear system is initially 
take stable, it is also stable under a finite loading. However, a nonlinear (either 

X =F 2 
(a) 

physical or geometrical) system can become unstable under a finite load. 
We consider first a single mass particle subjected to a system of forces whichThe force influence matrices defined by (7-35) follow from the force results listed on the 

sketches: are in equilibrium. Let be the displacement vector defining the equilibrium 

F0 = P{1/cos 0; 0; 0; 0; -tan 0; 0} position. We introduce a differential displacement A, and let AW be the 

F = {+1; +1; -cos 0; -sin 0; -sin 0; -cos 0} work done by the forces during the displacement A. If AW > 0, the particle 
(b) energy is increased and motion would ensue. It follows that the equilibriumP2,0 = PI-1; -tan 0; +tan 0} 

position () is stable only when AW < 0 for arbitrary ALi. 
P2. = 0 We consider next a system of particles interconnected by internal restraints. 

Assuming a bar is rigid is equivalent to setting .f = 0 for the bar. Then, the comple- Let AWE be the incremental work done by the external forces and AW, the 

mentary energy is due only to the diagonal bars: incremental work done by the internal restraint forces acting on the particles. 
The total work, A W, is given by 

vT = v* + V'* 
= eo,F + eo.2F2 + (fiF + f 2 F) (c) AW AWE + AW (a)

1 

The system is stable when AW < 0 for all arbitrary permissible displacement
We convert V*. to a function of X by substituting 

increments, that is, for arbitrary increments of the variabledisplacements. Now, 

F, = + X we let AWt be the work done by the internal restraint forces acting on the 
cos 0 restraints. Since AWD = -AW,, we can express the stability requirement as 

(d)1;2= +X AWo - AWE > o (7-38)
Finally, f1(X) has the form 

One can interpret AW D as the work requiredto deform the system to the alternate 
~ 

f P 0)I/l(X) = e0, t Co 
P 

+ (Al + 72 tan 0 - h3 tan O)P + fi p O2 position and AWE as the actual work done on the system. 

(e) When the behavior is continuous, we can express AWD and AWE as Taylor 
series expansions in terms of the displacement increments (see (7-2)):+ (eo,, + eo ) X ++ f2)X2 

AWE = d WE + d WE +... 
Differentiating (e) leads to WD + 

(b)
AW = dW f 2 D 

dIl, = {Veo I + e. 2 + f cS (J + 2)X} Ax (f We have shown that the first-order work is zero at an equilibrium position: 

d2 lC = (fl + f)(AX) 2 (g) dWD - dW = (c) 
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If we retain only the first two terms in (b), the general stability condit ion re- and the stability criterion reduces to 
duces to 

stable d2W > 0 for arbitrary nontrivial AU1
d2 WD - d2WE > 0 for all arbitrary permissible displacement incri ements neutral d2 WD = O for a particular nontrivial AU1 (7-42) 

(7-39) unstable d2 WD < 0 for a particular nontrivial AU11;Equation (7-39) is called the "classical stability criterion." Retaining only 
where d2WD is a quadratic form in AU,. We postpone discussing how one 

the first two differentials corresponds to considering only infinitesimal displace-
transforms (7-41) to a quadratic form in AU1 until the next chapter. 

ment increments. If (7-39) is satisfied, the equilibrium position is stable with 
When the material is elastic, we can identify (7-39) as the requirement that 

respect to an infinitesimal disturbance. In order to determine whether it is 
Ipbe a relative minimum. By definition, 

stable with respect to a finite disturbance, one must use (7--38). dHI = dVT- dWE (a)If For elastic behavior, 
d2 WD = d2 W (7-40) dV = dWD 

for a particular set of displacement increments, the equilibrium position is said 
and it follows that 

F. . , Up , 
to be neutral, and there exists an alternate equilibrium position infinitesimally Finally, we can state: 

d n,- d ", = d 
--

__ [7.-43) 
displaced from the first position. One can interpret (7-40) as the necessary 

An equilibrium position for an elastic system is stable (neutral, un­condition for a bifurcation of equilibrium positions. 
To show this, suppose U and J represent the displacement components 

stable) if it corresponds to a relative minimum (neutral, indifferent) 
for the two possible equilibrium positions of a system where 

stationary point of the total potential energy. 

(a) 
Example 7-6^ = U + AU 

Also, let R and P represent the resultant forces corresponding to U and I. 
The system shown in Fig. E7-6A consists of a rigid bar restrained by a linear elastic 

We can express as 
spring which can translate freely in the x2 direction. Points A and A' denote the initial and 
deformed positions. We will first employ the principle of virtual displacements to establishR = R + dR + 2½dR +- (b) the equilibrium relations and then investigate the stability of the system. 

Now, the second-order work for the initial equilibrium position is given by 

d2 W = d2W - d2 WD = AUT dR (c) 
Fig. E7-6A 

If d2 W = 0 for some finite AU, it follows that rXX 

dR = R AU = 0 (d)
The condition U2 

IRI =0 (e) 
X2 P2 

is equivalent to (7-40). Finally, if we consider AU to be infinitesimal, A' 

R = R + dR (f)
and (7-40) implies R1= 0. 

To apply the classical stability criterion to an ideal truss, we note that the 
first-order work terms have the form 

dWE = P AU 1 
dW = ,Fj dej 

(a) 

where U2, P1 are prescribed. Operating on (a) yields 
The first-order work terms are 

d2 WE = 0 
dWD = F ded2WD = [it;Fjd2ej + dFjde] 

(7-41) 

dWE = P2 du2 
(a) 
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where F,e are the spring force and extension. Since the bar is rigid, the system has only one stable Cos 3 0* > -P
degree of freedom, i.e., only one displacement measure is required to define the configura- kL 
tion. It is convenient to take 0as the displacement measure. The deformation-displacement 
relations follow from the sketch: neutral cos3 0* = P (n)

kL 

e = t = L(sin 0 - sin 0,) 
(b) 

?, 
unstable cos3 0* < -

-t2 = L(cos 00 - cos 0) kL 
Then, 

F = ke = kL(sin 0 - sin 00) (C) . One can show that (n) is equivalent to 

and dP2 
de = (cos O)L AO stable -- >0O 

dO 
du2 = (sin O)L AO (d) 

neutral dP 2 (o)
Using (a) and (d), the principle of virtual displacements takes the form - dO 

dP 2dWD - dWE = {F cos 0 - P2 sin 0) (L A0) = 0 for arbitrary A0 (e) unstable -<0 
dO 

Finally, (e)leads to the equilibrium relation, A transition from stable to unstable equilibrium occurs at point A, the peak of the load-
F cos 0 = P2 sinl 0 (f) deflection curve. The solution for 00 = 0 is different in that its stable segment is the linear 

solution and the neutral equilibrium point (P2 = kL) corresponds to a branch point.
which is just the moment equilibrium condition with respect to point 0. We transform Both the linear and nonlinear branches are unstable. 
(f) to an equation for 0 by substituting for F using (c). The result is 

Fig. E7-6B 
sin 0 - kL) tan 0 = sin 0o (g) P2 

kL 

Since the system is elastic, 
dW, - dWE -=drlp 

(h) 1.0 
and (e)is equivalent to 

dnp = 0 for arbitrary A0 
(i) 

The potential energy function for this system has the form 
2

Ip = 2ke - P 2 

= -kL 2 (sin 0 - sin 0,)2 - P2L(cos 0o - cos 0) (j) 
and (g) can be interpreted as 0o 0 

dn, 
= 0 => Eq. (g) (k)

dO 

Curves of (P2/kL) vs. 0 for various values of 00 are plotted in Fig. E7-6B. The result 
for 00 = 0 consists of two curves, defined by REFERENCES 

0 = 0 for arbitrary P2 /kL 1. WANG, C. T.: Applied Elasticity, McGraw-Hill, New York, 1953. 
cos 0 = P2 /kl for (P2/kL) 1 (1) 2. LANGHAAR, H. L.: Energy Methods in Applied Mechanics, Wiley, New York, 1962. 

3. REISSNER, E.: "On a Variational Theorem in Elasticity," J. Math. Phys., Vol. 29,
To investigate the stability of an equilibrium position, we have to evaluate the second- pages 90-95, 1950.

order work at the position. After some algebraic manipulation, we obtain 4. ARGYRIS, J. H., and S. KELSEY: Energy Theorems and StructuralAnalysis, Butter­
worths, London, 1960. 

d2TTP = d2WD - d2WE = k(L AO)2 [COSs3 0_-P 2/kLl (m) 5. CHARLTON, T. M.: Energy Principles in Applied Statics, Blackie, London, 1959.cos 0 
6. HOFF, N. J.: The Analysis of Structures,Wiley, & New York, 1956. 

Let 0* represent a solution of(g). Applying (m) to 0*results in the following classification: 7. WASItZU, K.: VariationalMethods inElasticity and Plasticity, Pergamon Press, 1968. 
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PROBLEMS 

7-1. Consider the two-dimensional symmetrical truss shown. Assume 
= U3 = 0.U2 
(a) Determine the first two differentials of e, and e2 by operating on the 

expanded expression (equation 6-19) for e. 
(b) When a << b, we can neglect the nonlinear term involving u1 2 in the 

expressions for e and p. Specialize (a) for this case. 
(c) When a >> b, we can neglect the nonlinear term involving u in the· 

im·1:__~~~~~~ _ _ · _ . _ , x__ _ _ :1_
expressions or e and p. pecialize (a) or tills case. 

Prob. 7-1 
1 

X2 

b 

3 
_XI 

H-a _a-·i 

7-2. Refer to the figure of Prob. 7-1. Assume 112 = U3 = 0 and a >> b. 
Using the principle of virtual displacements, determine the scalar force-equili-
brium equations for joint 1. 

7-3. Suppose a force F is expressed in terms of e, 

C2e
3F = Cle + (a) 

where e is related to the independent variable u by 

e = tuJr+l t2 (b) 

(a) Determine the first two differentials of the work function, W = W(u), 
defined by 

W = F deI 

(b) Suppose (a) applies for increasing e and 

F = C(e - e*) (c) 

for e decreasing from e*. Determine d2 W at e = e*. 
7-4. Refer to Prob. 6-23. The n - 1 independent node equations relating 

the branch currents are represented by 

ATi = 0 (a) 

Now, the branch potential differences, e, are related to the n - 1 independent 
node potentials, V, by 

e= AV (b) 
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Deduce that the requirement, 

iT de = for arbitrary AV (c) 
is equivalent to (a). Compare this principle with the principle of virtual dis­
placements for an ideal truss. 

7-5. Consider the two-dimensional truss shown. Assume u2 = = 0 
(a) Using (7-14), obtain a relation between the elongations and U32. Take 

the virtual-force system as AF2 and the necessary bar forces and re­
actions required to equilibrate AF2. 

(b) Using (7-12), express ul1, u 2 in terms of el, e3. Note that bar 2 is 
not needed. One should always work with a statically determinate 
system when applying (7-12). 

Prob. 7-5 

X2 

L~Xl 

7-6. Refer to Prob. 6-23. One can develop a variational principle similar 
to the principle of virtual forces by operating on the branch potential differ-
ence-node potential relations. Show that 

AiTe = 0 (a) 

for any permissibleset of current increments. Note that the currents must satisfy 
the node equations 

ATi = 

Deduce Kirchhoff's law (the sum of the voltage drops around a closed loop 
must equal zero) by suitably specializing Ai in (a). Illustrate for the circuit 
shown in Prob. 6-6, using branches 1, 2, 4, and 6. 

7-7. By definition, the first differential of the strain-energy function due to 
an increment in U1 has the form 

m 

dVT= X dV, = E F, de (a) 
n=1 1= 

We work with VT expressed as a compound function of e = e(U) since it is 
more convenient than expressing V directly in terms of U. One can also 
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write dVr as W = W(V) are the node current equilibrium equations expressed in 
dVT = V, u, AU 1 (b) terms of the node potentials. 

(c) Suppose we define a function W.(ij), which has the property that
(a) Using (b), show that the system of ij joint force-equilibrium equations 

expressed in terms of the joint displacements can be written as: dW; 
= e(i ) (d)

dij 
-Ptk (c) 

auCk k = 1, 2, ... ,i Determine Wj*corresponding to (a). 
b 

Equation c is called Castigliano's principle, part I. (d) Let W* = Z W. Show that the Euler equations for 
(b) Show that an alternate form of (c) is j=1 

Ptk = F,, Oe (d) 
I = ie - W* = i (AV) - W* = l(i,v) (e) 

n= (lttfk are the governing equations for a d-c network. 

Note that (d) is just the expansion of (c). Rework Prob. 7-2, using (d). (e) Show that the actual currents correspond to a stationary value of W*. 

7-8. Determine V(e), dV, and d2 V for the case where the stress-strain One can either introduce the constraint condition, ATi = 0, in (e) or 

relation has the form (see Prob. 6-10) use the result of Prob. 7-6. 
7-12. Investigate the stability of the system shown below. Take k,= aL2 ks 

a E(E - be3 ) 

7-9. Determine V*(F), dV*, and d2 V* for the case where the stress-strain 
P 

Prob. 7-12
relation has the form 

i IA 
c E ((a + Ca3) //{"/VVrE 

7-10. Show that (7-12) can be written as ]Linear 
translational 

ukj Pkj restraint 
Rigid rod 

where lkc = [Ic(P,) is defined by (7-31). This result specialized for U2 = 0 is 
called Castigliano's principle, part II. Apply it to Prob. 7-5, part b. Assume 
linear elastic material and = 2f = f2 = f-

7-11. The current and potential drop for a linear resistance are related by 

ej = e, j + Rjij (a) 

Inverting (a), we can express ij as a function of ej. /747I ;A ir (Linear rotational restraint) 

ij = R- '(ej - e, j) (b) - ... V11V 
(a) Suppose we define a function, Wj(ej), which has the property that 171'��7

and consider a to range from 0 to 6. 
dWj 
de = ij(ej) (c) 
DetermineWcorrespondingto (b).j 

Determine W' corresponding to (b). 
b 

(b) Let W = Wj where b = total number of branches. Considering 
j=1 

the branch potential drops to be functions of the node potentials, 
deduce that the actual node potentials V correspond to a stationary 
value of W. Use the results of Prob. 7-4. The Euler equations for 


