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5-6. Refer to Problem 5-3. Determine 'Ql corresponding to Jpl ={1/2, 
- 1/4, 1/3, - 1/10, 1/10, 0}. Verify that 

Q 'Q ' 

5-7. Verify that (5-27) and (5-28) are equivalent forms. Note that Part II 
l_0T Tb_... [~3 I x0l 

= QP)T-- |- ---
°I3 IP 13 - ANALYSIS OF AN5-8. Consider the plane member shown. The reference axis is defined by 

X2 = f(x,). IDEAL TRUSSX2 Prob. 5-8 j
i 

i ~~ -XI ­
i 

_Q 0 

\1 
t4~~~~~~~~~~~tX2 2~~~~~~~~~~~~~~ ~ 

X1 

I-,_ P 

(a) Determine .- pQ. Note that the local frame at P coincides with the 
basic frame whereas the local frame at Q coincides with the natural 
frame at Q. 

I(b) Specialize part (a) for the case where 
I 

4a 
x 2 =-E (xb - ) 

and the x coordinate of point Q is equal to b/4. Use the results of 
Prob. 4-2. 



6

Governing Equations 

for an Ideal Truss


6-1. GENERAL 

A system of bars* connected at their ends by frictionless hinges to joints and 
subjected only to forces alied at the ioint centers is called an ideal truss.t 
The bars are assumed to be weightless and so assembled that the line con­
necting the joint centers at the ends of each bar coincides with the centroidal 
axis. Since the bars are weightless and the hinges are frictionless, it follows that 
each bar is in a state of direct stress. There is only one force unknown asso­
ciated with each bar, namely, the magnitude of the axial force; the direction 
of the force coincides with the line connecting the joint c6nters. If the bars lie 
in one plane, the system is called a plane or two-dimensional truss. There 
are two displacement components associated with each joint of a plane truss. 
Similarly, a general system is called a space or three-dimelsional truss, and 
there are three displacement components associated with each joint. 

We suppose there are in bars (members) and j oints. We define i as 

i = 2 for a plane truss (6-1) 
i = 3 for a space truss 

Using this notation, there are ij displacement quantities associated with the j 
joints. In general, some of the joint-displacement components are prescribed. 
Let r be the number of prescribed displacement components (displacement 
restraints) and nid the total number of unknown joint displacements. It follows 
that 

=Id - r (-2) 

Corresponding to each joint displacement restraint is an unknown joint force 

* A prismatic member is conventionally referred to as a bar in truss analysis. 
t See Ref. 1. 
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GOVERNING EQUATIONS FOR AN IDEAL TRUSS CHAP. 6 

(reaction). We let nf be the total number of force unknowns. Then, 

nf = m r (6-3) 

Finally, the total number of unknowns, n, for an ideal truss is 

n = nf + nd = i + m (6-4) 

The equilibrium equations for the bars have been used to establish the fact 
that the force in each bar has the direction of the line connecting the joint 
centers at the ends of the bar. There remains the equilibrium equations for the 
joints. Since each joint is subjected to a concurrent force system, there are ij
scalar force-equilibrium equations relating the bar forces, external joint loads, 
and direction cosines for the lines connecting the joint centers in the deformed 
state. In order to solve the problem, that is, to determine the bar forces, reac­
tions, and joint displacements, m additional independent equations are required. 
These additional equations are referred to as the bar force-joint displacement 
relations and are obtained by combining the bar force-bar elongation relation 
and bar elongation-joint displacement relation for each of the m bars. 

In this chapter, we first derive the elongation-joint displacement relation for 
a single bar and then express the complete set of m relations as a single matrix 
equation. This'procedure is repeated for the bar force-elongation relations and 
the joint force-equilibrium equations. We then describe a procedure for in­
troducing the joint-displacement restraints and summarize the governing equa­
tions. Finally, we briefly discuss the solvability of the governing equations for 
the linear case. In this case, the question of initial instability is directly related 
to the solvability. 

In Chapter 7, we develop variational principles for an ideal truss. The 
two general procedures for solving the governing equations are described in 
Chapters 8 and 9. We refer to these procedures as the displacement and force 
methods. They are also called the stiffess and flexibility methods in some 
texts. 

The basic concepts employed in formulating and solving the governing 
equations for an ideal truss are applicable, with slight extension, to a member 
system having moment resisting connections. Some authors start with the 
general system and then specialize the equations for the case of an ideal truss. 
We prefer to proceed from the truss to the general system since the basic 
formulation techniques for the ideal truss can be more readily described. To 
adequately describe the formulation for a general system requires introducing 
a considerable amount of notation which tends to overpower the reader. 

6-2. ELONGATION-JOINT DISPLACEMENT RELATION FOR A BAR 

We number the joints consecutively from through j. It is convenient to 
refer the coordinates of a joint, the joint-displacement components, and the 
external joint load components to a common right-handed cartesian reference 
frame. Let X, 7i (j = 1,2, 3) be the axes and corresponding orthogonal unit 
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vectors for the basic frame. The initial coordinates, displacement components, 
and components of the resultant external force for joint k are denoted by 
Xkj, Uk, Pkj (j = 1, 2, 3) and the corresponding vectors are written as 

rk E Xkjlj = Xi 
j=1 

"k = Uk i (6-5) 
Pk = Pki 

The coordinates and position vector for joint k in the deformed state are 
qkj, k. 

Pk = ki = k + k 
1
lk = Xk Uk (6-6) 

Figure 6-1 illustrates the notation associated with the joints. 

X3 

Pk313 

Deformed position 
of joint k 

/ Pkl2 l 

I .A
I 770 

l 

X2 

/ 7nkl 

I / / 
_ __I 

·L z 

Xl 

Fig. 6-1. Notation for joints. 

We number the bars from 1 through m and consider bar n to be connected 
to joints k and s. The centroidal axis of bar n coincides with the line con­
necting joints k and s. From Fig. 6-2 the initial length of bar n, denoted. by 
L, is equal to the magnitude of the vector AP = P - Pk: 

-L A ~(6-7)~~AT~ 
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Since the basic frame is orthogonal, (6-7) reduces to 

3 X3
Ln = ( - Xk)(Xs - Xk)= Z (Xj - Xkj) 2 (6-8) 

j=l 

Before the orientation of the bar can be specified, a positive sense or direc­
,,tion must be selected. We take the positive sense for bar n to be from joint k. 

ap = (I,,, e) Joint s 

X3 

1

Joints 7s3 

Xs 3 / kl X2 

X2 / 
T 

sl 

I / / 
_ _ _ _ _ _ _ _ _ _ _ _ -

Xk2 I 
// Xsl 

X1 

·raL 

XI 
Xs2 Fig. 6-3. Deformed position of Bar n. 

Fig. 6-2. Undeformed position of Bar n. associated with the positive direction in the deformed state, and P, the corre­
sponding direction cosine matrix. These quantities are defined by 

to joint s and define a.j as the direction cosine for the positive 
in the undeformed state with respect to the Xj direction: 

sense oif bar n (L + e,) 2 = p A_ (6-12) 
l 1 

a6nj = 
1 

(Ar .) 
n 

1 
=-L (Xsj - Xkj)

L,,I 
(6-9) 

Rn.- A1 = P,i (6-13) 

It is convenient to list the direction cosines in a row matrix, a. Lj + e (A 7j) (6-14) 

1 
We consider first (6-12). Substituting for A, 

0a = [°(nln2W3] = (X, - Xk) (6-10)
Ln 

Note that o,,oc, = 1, due to the orthogonality of the reference frame. Finally, 
we let t, be the unit vector associated with the positive direction of bar n in 
the undeformed state. By definition, 

A = A + (, - k,) 
and noting (6-7), (6-11), we obtain, after dividing both sides by L,2 , 

(1+ e 2LnJ 
2= 1 + 1=I ± Lno,(u, - Uk) + (U - k)T(u - ) 

n L, s-k) (123 

(a) 

(6-15) 

tn 
1 

A 
Ln 

=A= a0i (6-11) ii 
The expression for the direction cosine, fl,j,expands to 

The deformed position of bar n is shown in Fig. 6-3. The length and direc­
nj e, L (, (6-16) 

tion cosines for bar n are equal to the magnitude and direction cosines for the Welistthe'sinarowmatrix,Ln 
vector, A = , - Pk. Let Ln + e be the deformed length, ,, the unit vector We list the ft's in a row matrix, ,B. 
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on= e [a +L (u, - Uk)] (6-17) 

Len1+LI,-

By definition, en is the change in length of bar n. Then, e,,/L,, is the extensional 
strain which is considerably less than unity for most engineering materials. For 
example, the strain is only 10-3 for steel at a stress level of 3 x 104 ksi. The 
relations simplify if we introduce the assumption of small strain, 

en/L,, << (6-18) 

Expanding the left-hand side of (6-15), and noting (6-18), we obtain 

e, z (,,(u, - uk) + I (u, - Uk)(us - Uk) (6-19) 
2L,, 

The direction cosines for the deformed orientation reduce to 

1 
p,, a + I (Us - Uk)' (6-20) 

Ln 

To simplify the expression for e further, we need to interpret the quadratic 
terms. Using (6-20), we can write (6-19) as 

en = (P 2 -, ('u, - Uk) (a) 

This form shows that the second-order terms are related to the change in 
orientation of the bar. If the initial geometry is such that the bar cannot ex­
perience a significant change in orientation, then we can neglect the nonlinear 
terms. We use the term linear geometry for this case. The linearized relations 
are 

en an(u - Uk) (6-21) 
Fn an 

We discuss this reduction in greater detail in Chapter 8. Since we are concerned 
in this chapter with the formulation of the governing equations, we will retain 
the nonlinear rotation terms. However, we will assume small strain, i.e., we 
work with (6-19), (6-20). 

6-3. GENERAL ELONGATION-JOINT DISPLACEMENT RELATION 

We have derived expressions for the direction cosines and elongation of a bar 
in terms of the initial coordinates and displacement components of the joints 
at the ends of the bar. By considering the truss as a system or network, the 
geometric relations for all the bars can be expressed as a single matrix equation. 
The relations for bar n, which is connected to joints s and k (positive direction 
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from k to s) are summarized below for convenience: 

Ln = (X, - Xk) (X5 - Xk) 

all = (x. - Xk) 
T 

Ln 

en = Y,(u - ok) (a)
1 

7 = a +I (", - Uk)T
2L,, 
I 

P = an + - (u - Uk) 

Up to this point, we have considered joints s and k as coinciding with the 
positive and negative ends of member n. Now we introduce new notation which 
is more convenient for generalization of the geometric relations. Let n+, n_ 
denote the joint numbers for the joints at the positive and negative ends of 
member n. The geometric relations take the form (we replace s by n+ and k 
by n_ in (a)): 

Ln. = (+ - Xn_)r(X,,+ - x,,_) 

T 
= - (xn,,+ X,,) 

en = Yn(U,+ - u,, ) (6-22) 

n + 2L,, (u+ -n-)= LYn 

Pn = an + j 5 (u.n - U,,_) T 

Ln 

To proceed further, we must relate the bars and joints of the system, that is, 
we must specify the connectivity of the truss. The connectivity can be defined 
by a table having m rows and three columns. In the first column, we list the bar 
numbers in ascending order, and in the other two columns the corresponding 
numbers, n+ and n_, of the joints at the positive and negative ends of the mem­
bers. This table is referred to as the branch-node incidence table in network 
theory.* For structural systems, a branch corresponds to a member and a node 
to a joint, and we shall refer to this table as the member-joint incidence table 
or simply as the connectivity table. It should be noted that the connectivity 
depends only on the numbering of the bars and joints, that is, it is independent 
of the initial geometry and distortion of the system. 

'._
cI~rw;;ismn"0 

I . ·- E 

As an illustration, consider the two-dimensional truss shown. The positive directions of 
the bars are indicated by arrowheads and the bar numbers are encircled. The connectivity 

*See Ref. 8. 



CHAP. 6 SEC. 6-3. GENERAL ELONGATiON-JOINT DISPLACEMENT RELATION 123 
122 GOVERNING EQUATIONS FOR AN IDEAL TRUSS 

table (we list it horizontally to save space) for this numbering scheme takes the following 
namely, n+ and n_: 

· +njnn_+ = = + '7 
form: 

, n = - Yn n (6-25) 

Bar,n 1 2 3 4 5 6 7 8 9 10 11 -,, = 0 when ¢=- n+ or n_ 

4 5 I a n+Joint (n+) 1 2 4 5 1 2 3 1 2 exHmns*? n-Z 
-Joint (n_) 2 3 5 6 4 5 6 5 6 2 3 

The .d matrix can be readily established by using the connectivity table. For row n, 

one puts +y, at column n, -y, at column n_, and null matrices at the other locations. 

The general form of the . matrix for the truss treated in Example 6-1 is listed below. 
Fig. E6-1 

We have also listed the elongations and joint displacement matrices to emphasize the 

.
'1 2 0 1 significance of the rows and partitioned columns of 

Ul U3 U4 U5 

0 io. el 7' -i1 0) 0 0 

·0e2 0 72 -YZ 0 

6 0 5 0 4 

e3 0 0 0 73 -73 0 

0 0 0e O Y4 -`744 

With the connectivity table, the evaluation of the initial length and direction cosines can 

The initial data consists of the j coordinate matrices, xI, x2 O 0, .be easily automated. 
To compute L, and a,, we first determine n+ and n_ from the connectivity table and then 

· · ·, x. 0 0- 75Ys5e5 

e6
For example, for bar 8, 8+ = 1, 8_-= 5, and 0 76 0) 0 - Y6 0 1.use the first two equations of (6-22). 

X8s, - X8 _ = X X5 

L2 = (x1 - x()T(Xl - X) 

OC (X - X)5 

We define e and o11as the system elongation and joint-displacement matrices, 

e = el, e2, , e, (6-23) 

= J/ui, U2 , --- ,U h . 

and express the m elongation-displacement relations as a single matrix equation 

u=-. s// (6-24) 

where v is of order m x if. The elements in the nth row of v involve only 

the elements of ,. Then, partitioning v into submatrices, -. k, of order 1 x i, 

where k = 1, 2,..., m and = 1 2, . . ., j, it follows that the only nonvan­

ishing submatrices for row n are the two submatrices whose column number 

corresponds to the joint number at the positive or negative end of member nt, 

e7 
0 0 7-7 0 0 - Y7 

e8 78 0 0 0 -78 0 

0 79 0 0 0 -'19eg 

0 
0 0-Y710 0 

0 
0el 0 -71 I io 711 

thet 

The Ivmatrix depends on both the geometry and the topology. It is of 
interest to express vWin a form where these two effects are segregated. The form 

of (6-25) suggests that we list the y's in a quasi-diagonal matrix, 

Y1 

72 (6-26)
Y 

J],n 
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and define C as referred to as incidence. We say-that a joint is positive incident on a bar when it is at 
the positive end of the bar. Similarly, a bar is positive incident on a joint when its positive

C = [C,,] = 1,2,...,c = [ck,] = , 2_.,j end is at the joint. For example, we see that joints 1 and 4 are incident on bar 5 and 
(6-27) bars 3, 4, 6, 8, and 11 are incident on joint 5. We will use this property of the connectivity 

_= - i matrix later to generalize the joint force-equilibrium equations.Cnn+ = +Ii Cn,-

Cn = 0 f n+ or 7I_1 

Then, 
d = yC (6-28) 6-4. FORCE-ELONGATION RELATION FOR A BAR 

The network terminology* for C is augmented branch-node incidence matrix. By definition, each bar of an ideal truss is prismatic and subjected only to 

We shall refer to it simply as the connectivity matrix. axial load applied at the centroid of the end cross sections. It follows that the 
only nonvanishing stress component is the axial stress, 6, and also, a is con­
stant throughout the bar. We will consider each bar to be homogeneous but 

Example 6-3 we will not require that all the bars be of the same material. The strain, e, will 
The connectivity matrix for Example 6-1 is listed below. The unit matrices are of order be constant when the bar is homogeneous and the force-elongation relation 

2 since the system is two-dimensional. will be similar in form to the uniaxial stress-strain curve for the material. 
A typical a-e curve is shown in Fig. 6-4. The initial portion of the curve is 

Joint Numbers essentially straight for engineering materials such as steel and aluminum. A 
material is said to be elastic when the stress-strain curve is unique, that is, 

1 2 3 4 5 6 
when the curves corresponding to increasing and decreasing a coincide (OAB 

-7 
and BAO in Fig. 6-4). If the behavior for decreasing a is different, the material 

1 + t2 - 12 is said to be inelastic. For ductile materials, the unloading curve (BC) is essen­
tially parallel to the initial curve.* 

2 +I2 - I2 

3 +12 -I2 

+12 - 124 

5 +12 -12 

Bar 
Numbers 6 +12 -12 

7 +12 12 

8 +12 0 C 
- 12 

Fig. 6-4. Stress-strain curves for elastic and inelastic behavior. 
- 19 +I2 

10 -I2 +12 We introduce the following notation: 

A = cross sectional area 
11 -I2 +I12 

F = axial force, positive when tension
.2+1 

eo = initial elongation, i.e., elongation not associated 
One can consider row n of C to define the two joints associated with bar n. It follows with stress

that column k of C defines the bars associated with joint k. This association is usually 

* See Prob. 6-6. See also Ref. 8. *A detailed discussion of the behavior of engineering materials is given in Chap. 5 of Ref. 2. 
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Since the stress and strain are constant throughout the bar, 

F = A 

e = L (6-29) 

We convert the cr-e relation for the material to the force-elongation relation 
for the bar by applying (6-29). 

a 

eI 
- _ _ _ _ _ _ _ _ _ 

Co - .to 

Fig. 6-5. Linear elastic behavior. 

We consider first the case where the stress-strain relation is linear, as shown 
in Fig. 6-5. A material having this property is called Hookean. The initial and 
transformed relations are 

a = E( - o) 

F = (e - eo) = k(e - e) (6-30) 

L 
e--E F + e = fF + eo 

We call k, f the stiffness and flexibility factors for the bar. Physically, k is the 
force required per unit elongation and f, which is the inverse of k, is the elon­
gation due to a unit force. B 

We consider next the case where the stress-strain relation is approximated 
by a series of straight line segments. The material is said to be piecewise linear. 
Figure 6-6 shows this idealization for two segments. A superscript (j) is 
used to identify the modulus and limiting stress for segment j. The force­
elongation relation will still be linear, but now we have to determine what i 

i 
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a 
F 

e 

Fig. 6-6. Piecewise 
linear approximation. 

segment the deformation corresponds to and also whether the strain is in­
creasing (loading) or decreasing (unloading). For unloading, the curve is as­
sumed to be parallel to the initial segment.* The relations for the various 
possibilities are listed below. 

i. Loading or Unloading-lnitiil Segment 

F < Aa(1) = F(1) 

F= k()(e -e(t)) (6-31) 

2. Loading-Second Segment 

F( ) At ( 2 ) = F( 2 )< F a< 

F k(2(e- e(2)) 

e2) = e(1) + (f(l) - f( 2 )F( 
(6-32) 

3. Unloading-Second Segment 

F( 2 )F(1) < F* d 

F = k(l)(e- e) 
(6-33)

eO* = e* - (l)F* 

One can readily generalize these relations for the nth segment.t 

* We areare neglecting the Bauschinger effect. See Ref. 2, Sec. 5.9. or Ref. 3, Art. 74. 
t See Prob. 6-8. 

I 
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Example 6-4 ment is reached. An alternate procedure is based on using the initial linear 
stiffness for all the segments. In what follows, we outline the initial stiffness 

We consider a bilinear approximation, shown in Fig. E6-4. approach. 

Fig. E6-4 12 

a (ksi) F (kips) 
A 

/I 

A / I 

/---- 1 IC=


0) I
I 
I 
I 

e (in./in.) I 

ee e qA 

(1) -eO, eq. 1 

Taking 
,Fig. 6-7. Notation for the initial stiffness approach.

L = 10 ft = 120 in A = 1in.2 

we obtain Consider Fig. 6-7. We write the force-elongation relation for segment 2 as 

k( ) = 
AE1 

) 

= 83.3 kips/in. f(l) = 1/k(') = 12 x 10 - 3 in./kip F= k( t)( e - e(o') )- A
L 

( 2 ) = k(t )(e - eo,eq) 
(6-34) 

AE 
k'2' = = 41.7 kips/in. f(2 

)= 24 x 10- 3 in./kip 
L where e, eq is interpreted as the equivalent linear initial strain and is given by 

tF(' = A = 30 kips 
eo, q = e(oj) + f(1 )A

e(02) = e ) + (f(l) - f(2))F(1) = 120 so - 0.36 in. 
A = (k(1) - k(2))(e - e(o ) -f( 1 ) F (1 )) 

(6-35) 

Segment 1 F = (83.3)(e - 120 eo) 

Segment 2 F = (41.7)(e - e 2)) The equivalent initial strain, eo,eq, depends on e, the actual strain. Since e in 

(2) turn depends on F, one has to iterate on eo,cq regardless of whether the seg-
Suppose a force of 35 kips is applied and the bar is unloaded. The equivalent initial ment limit has been exceeded. This disadvantage is offset somewhat by the use 

strain is (see Equation 6-33 and Fig. 6-6): of k( ) for all the segments. 
The notation introduced for the piecewise linear case is required in order to 

eo = e* - f(l)F* distinguish between the various segments and the two methods. Rather than 
e(2 ) e* = + (f( 2

) _ 'f(1))F*= e(?) + 0.06 in. continue with this detailed notation, which is too cumbersome, we will drop 
all the additional superscripts and write the force-deformation relations for bar 
n in the simple linear form 

The procedure described above utilizes the segment stiffness, which can be 
interpreted as an average tangent stiffness for the segment. We have to modify F = k(e - e,,) (6-36) 

e, = e,, + JnFnthe stiffness and equivalent initial elongation only when the limit of the seg­
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where k, f, and e are defined by (6-31) through (6-35) for the physically 
nonlinear case. 

6-5. GENERAL BAR FORCE-JOINT DISPLACEMENT RELATION 

The force-deformation and deformation-displacement relations for bar n are 
given by (6-22) and (6-36). Combining these two relations leads to an expres­
sion for the bar force in terms of the displacement matrices for the joints at 
the ends of the bar. The two forms are: 

F, = k(e, - eo,n) = Fo, + k,,u,,+ - knYnUn (6-37) 

Fo, n = -kneo, n 

and 
Yn(U + ­ u,,_) = e, = eo, + f,F,, (6-38) 

We can express the force-displacement relations for the "m" bars as a single 
matrix equation by defining 

F = {FF 2' Fm} (6-39) 

k =[k 2 k 1 = f-' 

and noting (6-24). The generalized forms of (6-37) and (6-38) are: 

F = k(e - eo) = Fo + k.4q't (6-40) 
and 

,atl = eo + fF (6-41) 

6-6. JOINT FORCE-EQUILIBRIUM EQUATIONS 

Let F,, be the axial force vector for bar n (see Fig. 6-8). The force vector 
has the direction of the unit vector, ii,, which defines the orientation of the bar 
in the deformed state. Now, 9,n= P,i. Then, 

F,, = F,,i = F,,I,i (6-42) 

When F, is positive, the sense of Fn is the same as the positive sense for the 
bar. Continuing, we define F,,, and F,,_ as the forces exerted by bar n on 
the joints at the positive and negative ends of the bar. From Fig. 6-8, 

F,,, = -F,. = - F.Pi
-F,,,.+ = -F, -F4i (6-43)+ ±-

Fnn_ = + Fn = +FnPi 
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Joint n+ 

AW* 
''''t 

=F-, i�,, 

Joint n_ 

Fig. 6-8. Notation for barforce. 

We consider next joint k. The external joint load vector is Pk, where 
Pk = Pki. For equilibrium, the resultant force vector must equal zero. Then, 

Pk= - FYj - E F,_ (a) 
j+ =k t-=k 

The first summation involves the bars which are positive incident on joint k 
(positive end at joint k) and the second the bars which are negative incident. 
Using (6--43), the matrix equilibrium equation for joint k takes the form: 

f)Pk >3 F_( - 3 F(|IT) (6-44) 
j+ =k E- =k 

Let .¢ be the general external joint load matrix: 

M ={P, P2,..., p} (ij x 1) (6-45) 

We write the complete set of joint force-equilibrium equations as: 

= F (6-46) 

Note that the rows of X pertain to the joints and the columns to the bars. 
We partition M into submatrices of order i x 1. 

=2,...,j and (i x m) 
t = 1, 2 ,...,j and 

(6-47) 

Since a bar is incident only on two joints, there will be only two elements in 
any column of M. From (6-44), we see that, for column n, 

· +,, = + V 

nq_ = - p;f (6-48) 
A,, = when f : n, or n_ 

The re matrix can be readily developed using the connectivity table. It will 
have the same form as VT with y, replaced by ,. When the geometry is linear, 

= Yn,, == a,, and 9 = aT 
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I when joint displacement restraints are imposed, there will be a reduction in 

the number of joint displacement unknowns and a corresponding increase in 
Example 6-5 

the number of force unknowns. This will require a rearrangement of °R, t.s, 
The B matrix for the truss of Example 6-1 has the following general form: SD and -. 

Bar Numbers Let r be the number of displacement restraints and nd the number of displace­
ment unknowns. There will be n, prescribedjoint loads and r unknown joint 

11 e_ _u o c_ .u. ....1 n... l_ _ l1 ') 3 4 5 6 7 8 9 10 ]1 
I . .._ usu __ ca.ea n
loads usually called reactions) corresponang to me nd unknown joint cuspiace­
ments and the r known joint displacements. We let U1, U2 be the column 
matrices of unknown and prescribedjoint displacement components and PP, 

P2 the corresponding prescribed and unknown joint load matrices. The re­
arranged system joint displacement and joint load matrices are written as U, P: 

"a 

U= (rx 1) 
Z 
fr U2 ( x 1) (6-51) 
0.5 = P~} (rid X ) 

(P2 j(r x 1) 
nd + r = ij 

We point out that the components contained in U (and P) may be referred to 
local reference frames at the various joints rather than to the basic frames. 

We could have also utilized the connectivity* matrix C to develop . Ittwas This is necessary when the restraint direction at a joint does not coincide with 

pointed out in Example 6-3 that the elements of the kth column of C define one of the directions of the basic frame. Finally, we let A and B be the trans­

the incidence of the bars on joint k. Using this property, we can write the formation matrices associated with U and P. Then, (a) takes the form: 

generalized form of (6-44) as I\I e = d& = AU= e + fF 
(b)A = C TrF a) P = BF 

where 
0, 0 1 We partition A, B consistent with the partitioning of U, P: 

(6-49)
2 -- °I (n x im) (mx nd) (mx r) 

(6-52)B [B] (nd X in)
0 ' ' ?tt 

LB2 (r x m)
Finally,-we have 

g = CTpT = (C)T 
(6-50) 

and write (b) in expanded form: 

e = AU + A2U2 = eo + fF (6-53)
6-7. INTRODUCTION OF DISPLACEMENT RESTRAINTS; 

Pt = B,F (6-54)GOVERNING EQUATIONS 
P2 = B2F (6-55) 

We have developed the following equations relating F, e, ., and 11, 
Equation (6-53) represents m equations relating the in unknown bar forces, 

e = ...~J = eo + fF (a) the nd unknown displacements, and the r prescribed displacements. Equation 
(6-54) represents nd equations involving the in unknown bar forces and the 

where the elements of O and ,? are the external joint-displacement and external nd prescribed joint loads. Lastly, Equation (6-55) represents r equations. for 

joint-load matrices arranged in ascending order. Also, in our derivation, we the r reactions in terms of the m bar forces. When the geometry is nonlinear, 

have considered the components to be referred to a basic reference frame. Now, A and B involve the joint displacements. If the geometry is linear, A = BT, and 

Bj = AT j = 1, 2 (6-56) 
* See Sec. 6-3, Eq. 6-27. 
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We have introduced the displacement restraints into the formulation by
replacing a, a with A, B. It remains to discuss how one determines A, B
from A, X. In the following section, we treat the case of an arbitrary restraint 
direction. We also describe how one can represent the introduction of displace­
ment restraints as a matrix transformation. 

6-8. ARBITRARY RESTRAINT DIRECTION 

When all the restraint directions are parallel to the direction of the global
reference frame, we obtain U from ?t/ by simply rearranging the rows of qi1
such that the elements in the first n, rows are the unknown displacements and 
the last r rows contain the prescribed displacements. To obtain A, we perform
the same operations on the columns of d. Finally, since P corresponds to U, 
we obtain B by operating on the rows of 6X or alternately, by operating on the 
columns ofAT and then transposing the resulting matrix. 

When the restraint at a joint does not coincide with one of the directions of 
the basic frame, it is necessary first to transform the joint displacement and 
external load components from the basic frame to a local frame associated with 
the restraint at the joint. Suppose there is a displacement restraint at joint k. 
Let Y (j = 1, 2, 3) be the orthogonal directions for the local reference frame 
associated with the displacement restraint at joint k. Also, let uj and p'j be 
the corresponding displacement and external joint load components. Finally,
let Rok be the rotation transformation matrix for the local frame at joint k with 
respect to the basic frame (frame o). The components are related by: 

k = Rokuk 
(6-57)

Pk = R°kpk 
where 

° R k= [cos (Y, Xj)] (6-58) 

We have omitted the frame superscript (o) for quantities referred to the basic 
frame (uki, p') to simplify the notation. 

We define qlJ, J' as the system joint-displacement and -force matrices 
referred to the local joint reference frames, 

= U1p2,p2,.., (-59) 

and R°" as the system joint-rotation matrix, 

Rol 

'oJ = _ (6-60) 

Rol 

Then, 
= ((oJ)TJ 

gpi = 4oJqp 
(a) 

SEC. 6-8. ARBITRARY RESTRAINT DIRECTION 

Operating on the initial equations with (a), 

(e = o)o =>(e = JJ) 

leads to 
( = F) => J = F) (b) 

Ac = Georg 
&1.J = dRJ (6-61) 

The transformation of MJ to . is the same as for the case where the restraint 
directions are parallel to the directions of the basic frame, that is, it will involve 
only a rearrangement of the rows of Js . Similarly, we obtain A by rearranging
the columns of d. The steps are 

,5 .J A ,[[AA 1 A2 ] 

LB2 

Example 6-6 

To obtain the submatrices in column ko f J we postmultiply the submatrices in column 
k of s by R. . We can perform the same operation on T and then transpose the
resulting matrix or, alternately, we can premultiply the submatrices in row k of by Rk.
As an illustration, see the J'matrix for Example 6-5 on page 136. The dJmatrix can be
determined by transposing iJ' and replacing 11,by n,,. 

One can visualize the introduction of displacement restraints as a matrix
transformation. We represent the operations 

- U and .P - P (6-62)as 

U = D P = Db 
and call D the displacement-restraint transformation matrix. 

When the restraint directions are parallel to the directions of the basic frame,
D is a permutation matrix which rearranges the rows of . We obtain D by
applying the same row rearrangement to a unit matrix of order ij. Postmulti­
plication by D effects the same rearrangements on the columns. Also,*
Dr = D-1. 

For the general case of arbitrary restraint directions, we first determine 0GlsJ
and then U. Now. 

O. = oJ07G 
(a) 

The step, WJ -- U, involves only a permutation of the rows of UJ and can be
represented as 

U = diJ (6-63) 
where II is the permutation matrix corresponding to the displacement restraints. 

*See Prob. 1-36 for a discussion of permutation matrices. 
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INITIAL INSTABILITY 

Combining (a) and (6-63), we have 

SEC. 6-9. 137 

U = H W°sq! (b) 
and it follows that 

D = Hi ° 
J (6-64) 

Since both H and " ° J are orthogonal matrices, D is also an orthogonal matrix. 
Using (6-62), 

B 
A 

= 
= 

D-4 
4DT 

(c) 

and then substituting for A, a, and D in terms of the geometrical, connectivity, 
local rotation matrices lead to 

B = [iI°J(c)T 

A = yC( °J)T (6-65) 

Equation (6-65) is of interest since the various terms are isolated. However, 
one would not generate A, B with it. 

kO(
IDCu 

6-9. INITIAL INSTABILITY 
e. 
E The force equilibrium equations relating the prescribed external joint forces 
XCuw and the (internal) bar forces has been expressed as (see Equation 6-54): 
Q 

Pi = B1F (a) 
CuM2KI
1a where P1 is ( x 1) and F is (m x 

depends on the joint displacements 
1). 
as 

When the geometry is nonlinear, B1 
well as on the initial geometry and 

restraint directions. In this section, we are concerned with the behavior under 
an infinitesimal loading. Since the nonlinear terms depend on the load intensity, 
they will be negligible in comparison to the linear terms for this case, i.e., we 
take B1 as constant. Then, (a) represents nd linear equations in m unknowns. 
If these equations are inconsistent for an arbitrary infinitesimal loading, we say 
the system is initially unstable. 

When the geometry is linear, B1 is independent of the loading and the initial 
stability criterion is also applicable for a finite loading. This is not true for a 
nonlinear system. We treat stability under a finite loading in Chapter 7. 

Consider a set ofj linear algebraic equations in k unknowns. 

ax = c (b) 

In general, (b) can be solved only if a and [a c] have the same rank.* It follows 
that the equations are consistent for an arbitrary right-hand side only when 

! the rank of a is equal toj, the total number of equations. Applying this condition 

*See Sec. 1-13; see also Prob. 1-45. 
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-

to (a), we see that the truss is initially unstable when the rank of B1 is less Example 6-8 

than nd. 
For the truss to be initially stable under an arbitrary loading, B1 must be We first develop the matrix for the truss shown in Fig. E6-8A and then specialize 

of rank nd. This requires m > n,. That is, the number of bars must be at least it for various restraint conditions. 

equal to the number of unknown displacement components. Since the rank 

may still be less than nd, this condition is necessary but not sufficient for initial Fig. E6-8A 

stability. In order to determine whether a truss is initially stable, one must 
I -4 

actually find the rank of B1. The following examples illustrate various cases 1 0
b 

2 
of initial instability. 

Example 6-7 

The force-equilibrium equations for the accompanying sketch are: /1 

Fig. E6-7 
21 

4" ( 3 

X2 
r = 4 F 
nd =5 

F1 F2 F3 F4 Fs 
LX, 

) Pit -1 - cos 0 

) P12 +1 sin 0 

3) p21 +1 cos 0 

F, F2 F3 F,4 
() P22 +1 sin 0 

y-1Pit 
5) P31 +1 cos 0 

+1Pl2 
fit I 0 P32 -I - sin 0 

1 P21 +1 
o P41 -1 -cos 0 

+1P22 
0 P42 -1 - sin 0 

+1P31 

There are three relations between the rows of : 
Row 3 is (-1) times row 1. The equations are consistent only if P21 = -Pi. 
Since m < nd, we know the system is unstable for an arbitrary loading without (1) row (D + row + row 0 = -row 0 

actually finding r(B1). (2) row 2 + row () + row = -row 

(3) (sin 0)(row + row ) - cos 0 (row ()) = cos 0 (row )) 
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The first two relations correspond to the scalar force equilibrium conditions for the external 
joint loads: 

4 

Y Pkl = Pll + P21 + P31 + P41 = 0 
k=l 

(a)4 

Pk2 = P2 + P22 + P32 + P42 = 0 
k=1 

The third relation corresponds to the scalar moment equilibrium condition: 

4 4 

E Mk = E (-Xk2Pk,, + XkPk2) = 0 (b) 
k=t k=l 

where Mk is the moment of the external force vector acting at joint k with respect to point 
0, the origin of the basic frame. We obtain relation (3)by taking Oat joint 4. Equation (b) 
reduces to 

-d(pll + P21) + b(p2 2 + P32) 0 (C) 

Using 
d L sin 0 (d)
b = L cos 0 

we can write (c)as 

cos 0 P3 2 = sin 0(p1 + P21) - COs 
0 

P22 (e) 

which is relation 3. 
We see that rows 2 and 5 are independent. The remaining set (rows 1, 3, 4, 6, 7, 8) 

contains only three independent rows. Now, we obtain B. from go by first taking a linear 

combination of the rows (when the restraints are not parallel to the basic frame) and then 

deleting the rows corresponding to the joint forces associated with the prescribed joint 

displacements. Since a has three linear dependent rows, it follows that we must introduce 

at least three restraints. Initial instability will occur if­

1. An insufficient number of restraints are introduced (nd > 5). 
2. A sufficient number of restraints are introduced (nd = 5) but the rows of Bt are 

not linearly independent. We say the restraints are not independent in this case. 
These cases are illustrated below. 

Case 1 

Fig. E6-8B 
2 

x2 

m = 6 

nd 6 

- X1 

SEC. 6-9. INITIAL INSTABILITY 

We obtain B by deleting rows 6 and 8 (corresponding to P32 and P42). The system is 
stable only when the applied joint loads satisfy the condition 

P21 3 = -PP41P2 


Case 2 

Fig. E6-8C 

X2 

,i = 6 

t = 

j__ xi 

We delete rows 4, 6, and 8. The number of restraints is sufficient (nd 5)but the restraints 
are not independent since r(B,) < 5. Actually, r(B,) = 4. To make the system stable, at 

least one horizontal restraint must be introduced. 

In Example 6-8, we showed that there are three relations between the rows 
of for a two-dimensional truss. These relations correspond to the force- and 
moment-equilibrium conditions for the complete truss. 

To establish the relations for the three-dimensional case, we start with the 
equilibrium equations, 

i (i 1) 

P = 0 (a) 
t=1 

j (2i-3) x 1 

(b)
M= 1 

where Mt is the moment of p, with respect to an arbitrary moment center, 0. 
For convenience, we take 0 at the origin of the basic reference frame. Par­
titioning X, 

Ial 
'V,-4=> __ (6-66) 

Ivi 

where k is of order (i x m) and using the matrix notation introduced in 
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Sec. 5-2 for the moment,* the equilibrium equations take the form PROBLEMS 
j 

(6-67) 6-1. Determine m, j, r, and nd for the following plane trusses: 
t. =1 

Xfo = 0 (6-68) Prob. 6-1 
10

f =1 

Equation (6-67) represents i relations between the rows of X, 

row q + row(q + i) + * + row [i(j - 2) + q] = row [i(j - 1) + q] 
q = 1,2,...i 

(6-69) 

and (6-68) corresponds to (2i - 3) relations. (a)
We have shown that there are at least 3(i - 1) relations between the rows 

of a. Now, we obtain B by combining and rearranging the rows of A. It 
follows that B will also have at least 3(i - 1) relations between its rows. Finally, 
we obtain Bi by deleting the rows corresponding to the restraints. For the 
system to be initially stable, we must introduce at least 3(i - 1) restraints: 

r = no. of restraints > 3(i - 1) (6-70) 

Note that this requirement is independent of the number of bars. Also, it is a 
necessary but not sufficient condition for initial stability. (b)

The number of restraints must also satisfy the necessary condition nd < in. 
This requires 6-2. Suppose bar n is connected to joints s and k where 

r (ij - d) (ij - m) (6-71) 
Xk = {1, 1, 0} (ft) xs = {5, -5, -2} (ft) 

Both (6-70) and (6-71) must be satisfied. Either condition may control r, 
depending on the arrangement of the bars. (a) Take the positive direction of bar n from k to s. Determine L,,, an, 

and t,,. 
(b) Suppose 

REFERENCES u = {1/10, 1/20, 1/10} (inches) 
1. NORRIS, C. H., and J. B. WILBUR: Elementary Structural Analysis, McGraw-Hill, U = {1/20, - 1/10, - 1/30} (inches) 

New York, 1960. 
2. CRANDALL, S. H., and N. C. DAHL: An Introduction to the Mechanics of Solids, Find qk and k. Note that the units of x and u must be consistent. 

McGraw-Hill, New York, 1959. Determine en and ,,, using the exact expressions (Equations 6-15, 
3, TIMOSHTENKO, S.: Strength of Materials,Part 2, Van Nostrand, New York, 1941. 6-17), the expressions specialized for the case of small strain (Equa­

4. TIMOSHENKO, S., and D. H. YOUNG: Theor. of Structures, McGraw-Hill, New York, tions 6-19, and 6-20), and the expressions for the linear geometric 
1945. case (Equation 6-21). Compare the results for the three cases. 

5. MCMINN, S. J.: MatricesfbrStructural Analysis, Wiley, New York, 1962. 6-3. Discuss when the linear geometric relations are valid and develop the 

6. MARTIN, H. C.: Introduction to Mnatrix Methods of StructuralAnalysis, McGraw- appropriate nonlinear elongation-displacement relations for the trusses shown. 

Hill, New York, 1966. Assume no support movements. 

7. LIVESLEY, R. K.: Matrix Methods of StructuralAnalysis, Pergamon Press, London, 6-4. Consider the truss shown: 

1964. (a) Establish the connectivity table. 

8. FENVES, S. J., and F. H. BRANIN: "Network-Topological Formulation of Structural (b) List the initial direction cosines. Do we have to include nonlinear 
Analysis," J. Struct. Div., ASCE, Vol. 89, No. ST4, pp. 483-514, 1963. geometric terms for this truss? 

(c) Locate the nonzero submatrices in ., using the connectivity table. 
* See Eq. 5-11. Determine the complete form of .u. 
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1 

Prob. 6-3 

X2 

0®
L 

3 

(a) 

X, 

L X1 4 

2 00 
(b) 

I3 0 2 
X2 Prob. 6-4 

X1 

6 4 

(d) Determine C. 
(e) Verify that = C. 

6-5. Determine d for the three-dimensional truss shown. 
6-6. Consider the d-c network shown. The Junctions are generally called 

nodes, and the line connecting two nodes is called a branch. The encircled 
numbers refer to the branches and the arrowheads indicate the positive sense 
(of the current) for each branch. 

PROBLEMS 145 

Let vj (j = 1, 2,..., 5) denote the potential at node j. Also, let n+ and _ 
denote the nodes at the positive and negative ends of branch n. The potential 

Prob. 6-5 
1,1) 

X3 

), 1,0) 

X1 

I 

(1, 0, 0) (1, 1,0) 

Prob. 6-6 

1 0 

drop for branch n, indicated by e, is given by 

e = Vn_ - n+ n 

We define v and e as 

V = {v 1 , v2,..., , 5 } = general node potential matrix 

e = {e, e2 ., e = general branch potential difference matrix 

and write the system of branch potential difference-node potential relations as 

e =.cv 

Determine a, using the branch-node connectivity table. Discuss how the truss 
problem differs from the electrical network problem with respect to the.form 
of d. How many independent columns does d have? In network theory, d 
is called the augmented branch node incidence matrix. 
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6-7. Take L = 20 ft, A = 2 in2 , and the a-s curve shown. ji-,-; (a) Determine expressions for Es and Et, the secant and tangent moduli. 
1'.
(a) Develop the piecewise linear force-elongation relations. (b) Determine expressions for ks and kt. 

(b) Suppose a force of + 60 kips is applied and then removed. Determine i__, (c) Suppose the material behaves inelastically for decreasing Jol. Consider 
the force-elongation relation for the inelastic case. 

° I the unloading curve to be parallel to the initial tangent. Determine the 
(c) Suppose the bar experiences a temperature increase of 100 F. Deter- force-elongation relation for AB. 

mine the initial elongation. Consider the material to be aluminum. 6-11. Repeat Prob. 6-10, using the stress-strain relation 

)Prob. 6-7 1, . , 
=-( + cIal") 

where E, c, and n are constants. 
6-12. For the accompanying sketch: 

6 X 103 ksi 
I Prob. 6-12 

2 020 1 
TX2 15' 

o0+ 
15' 

n./in.) 4 51 

6-8. Generalize Equation 6-32 for segmentj. Start with 
i 4 I .5, ---- !o 5 1 o---C 

e = e) + f( )F (a) Locate the nonzero submatrices in P,. 
(b) Assemble 3 for the linear geometric case. 

and express e ) in terms of quantities associated with segment (j - 1). 6-13. Repeat Prob. 6-12 for the three-dimensional truss shown. 
6-9. Generalize Equation 6-35 for segment j. 
6-10. Suppose the stress-strain relation for initial loading is approximated, Prob. 6-13 

as in the sketch, by 2 

a = E(s - be3) 
X3 

Prob. 6-10 

- X2X1 4 

10'aA 0 
2 

= ESe I
,( I- 15' +i '15'' 

= Et 

6-14. Consider the electrical network of Prob. 6-6. 
(a) Let i, be the current in branch n. The positive sense of i, is from node 

n_ to node n+. Now, the total current flowing into a node must equal 
the total current flowing out of the node. This requirement leads to 

X EA one equation for each node involving the branch currents incident on 
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the node. Let 6-17. Refer to Prob. 6-13 
(a) Develop the general form of B. 

i = {il, i2,..., i7} = general branch-current matrix (b) Determine B1 and B2 corresponding to the following prescribed dis-

Show that the complete system of node equations can be written as placements: 
2 

Uli, U 1,U1 2 , 3 U3 3 , U2 3 , t1 3
(5 x 1) 

o'Ti = 0 (a) The local frame at joint 2 is defined by the following direction cosine 
where 4 is given in Prob. 6-6. table. 

(b) How many independent equations does (a) represent? 
(Hint: has only four independent columns). x 2X2 X3 

(c) When the resistance is linear, the current and potential drop for a Y - 1/2 1/2 0 
branch are related by 

r2 1/2 1/2 -1/ 2 
en = e, . + RNin (b) 

i 1/2 1/2 1/ 2 
where e,, is the branch emf and R,, is the branch resistance. An 
alternate form is 6-18. Consider the two-dimensional truss shown. The bars are of equal 

i,, = R, l(e. - e ) length and 0 is the center of the circumscribed circle. The restraint direction 
is c degrees counterclockwise from the tangent at each joint. Investigate the 

Note the similarity between (b) and the linear elastic member force- initial stability of this system. Repeat for the case of four bars. 
elongation relation. Show that the complete system of branch cur-
rent-node potential relations can be written as Prob. 6-18 

r Irncr, int rlirortnnl 
11|t uiclclull 

e = dv = e0 + Ri ]
(c) it)

i = R-l(e - eo) = R-l1/v - R-le o 

Equations (a) and (c) are the governing unpartitioned equations for a 
linear-resistance d-c network. The partitioned equations are developed 1 =- 12 = 13 

in Prob. 6-23. It should be noted that the network problem is one­
dimensional, that is, it does not involve geometry. The go? matrix 
depends only on the topology (connectivity) of the system. Actually, 
d corresponds to the C matrix used in Sec. 6--3 with i = 1. 

6-15. Refer to Prob. 6-12. Suppose ul,1 u4 2 , u5 2 are prescribed. Identify 
B, and B. 

26-16. Refer to Prob. 6-12. 
(a) Develop the general form of J. 0 
(b) Suppose ul , U42, U2 are prescribed. The orientation of the local2 

frame at joint 5 is shown in the sketch. Determine B1 and B2. 

6-19. Suppose nd = m. Then, B1 is of order mnx m. The equilibrium 
rroo eProb. 60-16e 

X2 
equations for P = 0 are 

(mx n) (mx 1) n x 1 

B1 F = 0 (a) 
i 

5 
1 If (a) has a nontrivial solution, the rank of B1 is less than m and the system is 

initially unstable (see Prob. 1-45). Rather than operate on B1 , to determine 
r(B1), we can proceed as follows: 

(1) We take the force in some bar, say bar k, equal to C: 

Fk = C 
x1 
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(2) Using the joint force-equilibrium equations, we express the remaining 
bar forces in terms of C. 

(3) The last equilibrium equation leads to an expression for Fk in terms 
of C. If this reduces to an identity, r(B1) < nd since a nontrivial solution for 

F exists. This procedure is called the zero load test. 
(a) Apply this procedure to Prob. 6-18. Take F, = C and determine 

F2, F3, and then F1 using the equilibrium condition (summation of 
forces normal to r must equal zero) for joints 1, 2, 3. 

(b) When nd= m and the geometry is linear, the truss is said to be statically 
determinate. In this case, we can determine F, using only the equations 
of static equilibrium, since the system, P1 = B1F, is square. Do initial 
elongations and support settlements introduce forces in the bars of 
a statically determinate truss? 

6-20. Modify the zero load test for the case where nd < m. Note that the 

general solution of B,F = 0 involves m - r(B 1) arbitrary constants. 
6-21. Investigate the initial stability of the two-dimensional truss shown. 

Use the zero load test. 

Prob. 6-21
2 

T 

b

I 
1 

I- c - :l- -c---d-' 

6-22. Investigate the initial stability of the system shown. The restraint 

directions are indicated by the slashed lines. 

Prob. 6-22 

I 
a 

4 2 t 
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6-23. We generalize the results of Probs. 6-6. and 6-14 for a network 
having b branches and n nodes. Let 

e = branch potential diff. matrix = {e1, e2,..., eb} 

i = branch current matrix = {it, i2,..., ib} 

v = node potential matrix = {vl, v2,. ., v,} 

The general relations are (1) node equations (n equations) 

(nxb) (bx 1) (nx 1) 

,dT i = 0 (a) 

and (2) branch equations (b equations) 

e = dv = e + Ri (b) 

Now, ,/T has only n - 1 independent rows. One can easily show that the 
rows of ,. r are related by 

n-1 
row n = - Z row k (C) 

k=1 

It follows that (a) represents only n - 1 independent equations, and one 
equation must be disregarded. Suppose we delete the last equation. This 

(last row of T). We partition ,corresponds to deleting the last column of, 
(bxn) b x (n-l 1) bxl 

aJ = [ 1 : ,-2]1 (d) 

and let ,s/ = A. The reduced system of node equations has the form 

A i = 0 (e) 

Note that AT corresponds to B1 for the truss problem. 
Equation (e) represents (n - 1) equations. Since v is of order n, one of the 

node potentials must be specified. That is, we can only determine the potential 
We have deleteddifference for the nodes with respect to an arbitrary node. 

the last column of v which corresponds to node n. Therefore, we take v, as 
the reference potential. 

(a) Let 
V = {v - vn, V2 - V, .. V, - Vn}

(n-) x 1 

Show that 
v = AV 

Summarize the governing equations for the network. 
(b) The operation 

-- A 
v -V 

1 
b corresponds to introducing displacement restraints in the truss pro­

blem. Compare the necessary number of restraints required for the 
network and truss problems. 

3 
kI- d -- _C---- C------


