584 GENERAL FORMULATION—LINEAR SYSTEM CHAP. 17
in (a) and (17-131): B B
I, =V + (P}, - PH(BU + H,)
V=4 — v ) K — +,) (17-132)
"I/' = AIBU -+ A1H3 + Azﬁz
The variation of I1, considering U as the independent variable is
dIl, = AUT[B(P, , — P,) + B"ATK'AB)U
' + BTATK(AHs + AU, ~ 77,)] (8
= AUT[(B"K,,B)U — B"H,]
Requiring IT, to be stationary for arbitrary AU results in (17-126). Notc that

we could have used the reduced form for V, ie., equation (d). Also, we still
have to determine the constraint forces.

il
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18-1. INTRODUCTION

In this chapter, we extend the displacement formulation to include geometric
nonlinearity. The derivation is restricted to small rotation, i.e., where squares
of rotations are negligible with respect to unity. We also consider the material
to be linearly clastic and the member to be prismatic.

The f{irst phase involves developing appropriate member force-displacement
relations by integrating the governing equations derived in Sec. 13-9. We treat
first planar deformation, since the equations for this case are easily integrated
and it reveals the essential nonlinear effects. The three-dimensional problem
is more formidable and one has to introduce numerous approximations in order
to gencrate an explicit solution. We will briefly sketch out the solution strategy
and then present a linearized solution applicable for doubly symmetric cross-
sections.

The direct stiffness method is employed to assemble the system equations.
This phase is essentially the same as for the lincar case. However, the governing
equations are now nonlinear.

Next, we described two iterative procedures for solving a set of nonlinear
algebraic equations, successive substitution and Newton-Raphson iteration.
These methods are applied to the system equations and the appropriate re-
currence relations are developed. Finally, we utilize the classical stability
criterion to investigate the stability of an equilibrium position.

18-2. MEMBER EQUATIONS—PLANAR DEFORMATION

Figure 18~1 shows the initial and deformed positions of the member. The
centroidal axis initially coincides with the X, direction and X, is an axis of
symmetry for the cross section. We work with displacements (uy, Uy, w3),
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586 ANALYSIS OF GEOMETRICALLY NONLINEAR SYSTEMS CHAP. 18

wces (F.. F,. M) referred to the
stributed external force (by), and end forces (Fy, F3 :
iftt:;?‘(l;? -)Z(-X ,) member frame. The rotation of the chord is denoted by
1 .
ps and is related to the end displacements by
_ Upy T Ua2 (18—1)
P3 = L

(13-88). For convenience, we drop the

The governing equations follow from nee,

i =m
subscript on x;, and M;, w3, 15 Also, we consider by 3

. wﬁ/‘
Kot Deformed position \<

3
|

! o
™) s
wy3 | i_‘ For =P
Fa
M3 U2
Ua2 Initial position
r——l%—l——‘ dxy A — Xy, Uy

A

P Q B
Centroidal axis

Fig. 18—1. Notation for planar bending.

Equilibrium Equations
Fy =0
d F))+b,=0
E;C(F Wz, x T 42 2
F2 = _MA,.\'

Force-Displacement R elations

_F.:_l. = Uy, x + 'li(uz,x)z
AE '

Fy
e = Up x T w

GA,

(@)

(b)
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Boundary Conditions

Forx = 0:
Uy = Ty or [Filo = —Fyy
Uy = Uyy or ’Fz + Fl“Z,xlO‘: —Fy, (©
w = @y  OF Mo = — M43

Forx = L:
Uy = T or |File = +Fp
Uy = Ty or  |Fy 4 Fiuy | = Fp, (d)
= Dy or _ [M|;, = +Mpg;

Integrating (a) leads to
Fl = FB] = P
F, + Pu, , = PC, — {, b, dx (e
M3 — Puy = —C3P — C,Px + [ ([, by dx)dx
where C,, C; are integration constants, We include the factor P so that the

dimensions are consistent. The axial displacement u, is determined from the
first equation in (a),

PL 1 (" '
Upy — Ugy = ZE' — :'): J‘o (uZ,x)2 dx (18“2)
Combining the remaining two cquations in (a), we obtain
P " EI
M = EI e b
<1 + GA2> "2.x_x + GAZ 2 (f)

Finally, the governing equation for u, follows from the third equation in (e),

2 2 u* (| El
Uy wx + Uy = 1(Cox + C3) + ) -(-;71»; b, — ) xbz dx | dx

where (18-3)
A ‘uz =1 ,.__A.,.,i_,,«

P
E o
! (1 GA z)

;uz = Cycos ux + Cssinpux + Cyx + C5 + uy,

The solutions for u, and M are

P
w = (l + 2,;4—;>(~C4 sin ux + Cs cos ux)

(18-4)
. 1 P A
; —— | b, dx e
+C2+GA2 ) “d‘(+(l+GAZ>u2b’x
where u,, denotes the particular solution due to b,. If b, is constant,
b { EI v, 2
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Enforcing the boundary conditions on u,, w at x = 0, L lgad§ toA four linear
equations relating (C, - - - Cs). When the coeflicient matrix is singular, the
member is said to have buckled. In what follows, we cxclude mgmber buck-
ling. We also neglect transverse shear deformation since its effect is small for a
homogeneous cross section. '
We consider the case where the end displacements arc prescribed. The net
displacements are
Upet = u = (ﬁ - ulb)x=0, L (18-“6)
Wyt = CUI = ((7) - ulb, x)x‘-:O.L

Evaluating (18—4) with 4, = oo, we obtain

Cl = Q)Li - [iCS
C3 = u:‘ - C4
1—cosul wp — wy
Co = —Cs sin oL e sin pl (18-7)
1 —cospul | ,
Cs = %{(u; — iy — wlsin pL — —— 2 F (g — wA>}

D = 2(1 — cos uLy — ulL sin pL

Note that D — 0 as uL — 2. This dcfines the upper limit on P, i.e., the member
buckling load:

 Pliay = —rye (18-8)

The end forces can be obtained with (c—e). We omit the algebraic details
since they are obvious and list the final form below.

M3 = M3 + %[4’1@1«13 + ¢rps — %(ulil - “Az)}
Mps = Mjp; + %[d’zwm + piwps — %(um - ”,42):;
Fap=Fiyy + ﬁf%&[wss +was — %(“BZ - ”Az):’ - {i(”Bz — Uyz) (18-9)
Fgy = Fp — i)‘# {:wm + Wy3z %(“Bz - “Az):; + ]}; (upy — tg2)
P = Fm FAL = —P
Upy — Ugqy = % - J:%(uz.x)Z dx = ;% —elL

where
D = 2(1 — cos uL) — uL sin uL
qul = plL(sin puL — ul cos pL)
D¢y = pL{uL — sin pl)
Doy = Dy + $g) = (uL)*(1 — cos pl)
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The ¢; functions were introduced by Livesley (Ref. 7), and are plotted in Fig.

18-2. They degenerate rapidly as uL — 27. The initial end forces depend on
the transverse loading, b,. If b, is constant,

ro L
}AZ - FBZ - - )
_ bL? ; 18-10
My = 2 (= 460~ 62) (1810

i Vi
My; = — M,

In order to evaluate the stiffness coeflicients, P has to be known. If one end,
say B, is unrestrained with respect to axial displacement, there is no difficulty
since Fj, is now prescribed. The relative displacement is determined from

P = Fm
PL
Upy = Uy + 1B~ Le,
[* N
e = o= (uZ,x) dx = er(uL> Uy2, Ups, Wy, CUB)
2L |, :
N2 Ugy — Uy, .
2e, = ¢5(C5)* + [4 (“*’“I‘“‘w) + dglewgs — 0)43)} Cs

Ugy — Uy, )\

+ Pilwps — w43 + (‘B}Tﬁ)

‘ . (18-11)
Doy = plL sin uL :

’

03 gy, — U
Cs = “(ﬁf}z(wm — Wy3) + Pg ("‘B“Z"L 42 0)A3>

. ,
¢, = (—,ufgnv;i? {[LL( pL — sin pL cos ul) + 2(1 — cos ,uL)Z}

¢ = (1 - cos uL) {4» - @%)—}

_ (1 —cosuL 4 1 sin pL cos ul
e R O e

We call ¢, the relative end shortening due to rotation. However, when both
axial displacements are prescribed, we have to resort to iteration in order to
evaluate P since e, is a nonlinear function of P. The simplest iterative scheme is

) AE i
PU+h + (upy — uyy) + AEe? (18-12)

and convergence is rapid when uL is not close to 2r.

Expressions for the incremental end forces due to increments in the end
displacements are needed in the Newton-Raphson procedure and also for
stability analysis. If ;L is not close to 2m, we can assume the stability functions
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T

10

Fig. 18—2. Plotofthe ¢ functions.

are constant and equal to their values at the initial position, when operating
on (18-9). The resulting gxpressions are

¢3
dMA3 = dMA:.; + ‘—“‘b [(/51 A(OA3 + (/)2 A(U];a - "‘(Alle - AMAZ)]
V : E3 A —?*(Au — Atiygs)
dM gy = dMps + —— ¢ Awys + ¢y Awps B2 A2

— ‘753 I —— — Al ys J
dF 45 = dF + “*i—’“ Awgs + Dwrgs (Au32 Ug2) (18-13)

P Upy — Ua2
— ——(AUBZ b AMAZ) - ‘B’ZML dp

dFg, = dFy, — (dF 45 — dFy2) B
dFBl = dP dFAI = —AdP

dP = —/—;E(AMBI — Au,“) + AE dei‘
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where the incremental initial end forces are due to loading, Ab,. We can
obtain an estimate for de, by assuming Au, . is constant.

1 [ Upy — Uy \[Ailgy — Atiy,
= x =~ : -14
de, 7 L Uy, Auy  dx ( T 3 _ (18-14)

The coefficients in (18—13) are tangent stiffnesses. They are not exact since
we have assumed ¢; and Au, . constant. To obtain the exact coefficients,
we have to add

ElL, u v u
T [wAd)l + wpdy — 42 d”sj} d(puL)

L
si=-1 ¢ (18-15)
pr = oy @i -
dul)
L
dul) = ——" dP
(uL) 2El, ,u(

to dM , and similar terms to dMy, ..., dF, The derivatives of the stability

functions are listed below for reference:

L) sin pl ¢y

¢s = ul +

D wL
’ — ___2
P5lox o " (18-16)

#i= (1= 91+ 4} + Hh — )

¢y = ¢35 — P
We also have to use the exact exprcssion for der,
de, = 2% au, ﬁA - o N EA L) (18-17
er“fz)_l[;; +““ Ups {' 7 Wp + - 7( L) A(uL) )

in the equation for dP. An improvement on 18—14) is obtained by operating
on (18~11), and assuming uL is constant.

18-3. MEMBER EQUATIONS—ARBITRARY DEFORMATION

The positive sense of the end forces for the three-dimensional case is shown
in Fig. 18-3. Note that the force and displacement measures are referred to
the fixed member frame. The governing equations for small rotations were
derived in Sec. 13-9. They are nonlinear, and one must resort to an approximate
method such as the Galerkin scheme,} in which the displacement measures are
expressed in terms of prescribed functions (of x) and parameters. The problem
is transformed into a set of nonlinear algebraic equations relating the param-
eters. Some applications of this technique are presented in Ref. 5.

+ This method is outlined in Sec. 10-6.
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X, . MBL wp2
: Deformed position
tMAz,wAz "_{/E% z
L7 >
- Mgy, wp1
=T P F

/ | ug2

U2 Mpy, wps

B tpt x
Al, - | P A
| i //
Initial position l(_/ : s
T e—= T i /
= Uy T a3
X3 . P T

Note: The centroidal axis coincides
with X;. X, and X3 are prin-
cipal inertia directions.

Fig. 18-3. Notation for three-dimensional behavior.

If we consider b, = 0, the axial force F is constant along the member and the
nonlinear terms involve o, and coupling terms such as Faug, ¢ oM 2 ctc.
Neglecting these terms results in linearized equations, called the Kappus
equations. Their form is:

Equilibrium Equations

F, =P

i

ch_ [Plugs, 1 + T30m1,4) + Fz]“" b, =0
1

4

[Pluss,y — Xawq,1) + Fs]+b3=0
dxy

d ¥ —
M4 + M7y +mp + P [P(%3us2, 1 — XoUss, 1 + Biw;, )] =0
1

M, — Fy+m =0
Ms+ F, +my=0 (18-18)
M, - My +my =0
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Force-Displacement Relations

=1y, + b + udh + fiol ) + o (Rt — Xalhss, 1)

L(F, Fy Xar
— = |- 4 = M
Uy, 1 — 3 (Az + i, + 7 Mr

L
AE

u . M
_Mr _ My
U1 =6 S El,

M M
wz‘I:ETz 0)3,1:’15%

1 .
f + Wy, = Ej(CVM?' + X3rF2 + erF?a)

Boundary Conditions (+ for x = L, — for x = 0)

= ifl

Plug, \ + X0, 1) + Fy = £F,

Plug, , — Xpmy. () + F3 = +F;

%+ MG + P(Xsug,  — Xplhgs, 1 + Browg 1) = £ My

M, = iMz My = iMs fwfp = :f.'M.j,

To interpret the linearization, we consider (13-81). If one neglects the
nonlinear terms in the shearing strains,

Yiz & Uy o + Uy @)
Yis A Uy 3 + U3y .
takes the extensional strain as
~ 5 1in2 ~2 2 2y,..2
g &y 4+ 3|03 + 85 |y =x=0 + (X3 + X304 (b)

and assumes
fix2(x3 + x3)dA = 0
{1303 + x3)dA = 0 ©
j'j'(p(x§ + x2)dA =0

one obtains (13-81). Equations (c) are exact when the section is doubly sym-
metric. Assumptions (2) and (b) are reasonable if w,  is small w.r. to u, ; and
u; 1. However, they introduce considerable error when w;  is the dominant
term. This has been demonstrated by Black (Ref. ).

When the cross section is doubly symmetric,

= - 1
x2:x3=x2,=x3rzzz—;=0 (18’19)
B:I—lzi’z

T
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(r is the radius of gyration with respect to the centroid) and the problem
uncouples to—
1. Flexurein X;-X, plane
2. Flexure in X;-X; plane
3. Restrained torsion
We have already determined the solution for flexure in the X,-X, plane.
If we introduce a subscript for u and ¢, )

3]

2 _ ’ RY
(H2)” = El, (#3) LI, (18-20)
$21 = P1(p2L) ¢31 = dilusl)
and then replace ,
Uy —> Ug W, = W3
Uz — —Uy w3 = — Wy
18-21
FZA“>F3 Mz"')Mg ( )
Fy— —F, My — —M,

in (18-9), (18~13), we obtain the member relations for flexure in the X -X;
frame. For example,

_ . E [
MA‘3 = Myz + —Izi [(/)2160,13 + ¢Py20p3 — %(HBZ - “Az)}

' (18-22)

. i »,2 (/)33

My, = My, + T 31042 + P320p2 + e (tps — Uq3)

and B
Fap= "
{4
. 3Bl 2 P
Faz = Fis + @27-—%{—0)92 a2 = (ups — LM;):} - }:(um — Uq3)

The expressions for the axial end forces expands to
Fgo=P Fqy=-P

AE
P = A (upy — ugy) + AE(e, + €2 + €3)

2 (L r (* 18-23
€1 = 7L L wi,y dx €2 = oL L (3. ) dx; ( :

€3 = 7L J;) (us,x)z dx,

where e, is obtained from e,, by applying (18-21).

We generate the restrained torsion solution following the procedure described
in Example 13-7. If the joints are moment resisting (i.e., rigid), it is reasonable
to assume no warping, which requires f = 0 at x = 0, L. The corresponding
solution is summarized below:

™o
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P r’p 2= 1+P
GJ T EI,1+ G+ P)

GJ :
My, = T(/)z(wm — Wyy)

My = *M}n
by = 1+ P
©,, L—coshpl 2 (18-24)
" osinhpl | pl(l + C(1 + P))
. MBI
D1 = Oa TR {’C

1 . 1 — cos
+ m[—smh ux + wg-i—[%&?z&—[—'(l — cosh yx)]}
We neglect shear deformation due to restrained torsion by setting C, = 0.
If warping restraint is neglected,
El,=0 = p?=w
¢t =1 + P
At this point, we summarize the member force-dispiacemenf relations for

a doubly symmetric cross section. For convenience, we introduce matrix
notation:

(18-25)

Ty = {F1F2F3M1A7[2A73}B

Uy = {U113U300,02003}
etc. 4 (18-26)
Fp=Fy + kpgUy + kg U, + F,
Fa=Fu+ (k) Up + kyuUy — F,

where &, contains nonlinear terms due'to chord rotation and end shortening

i

i

= {AE(eu + €, + era);f(ugz - u,lz):-ff(um — ty3); 05 0; 0};9’* * contains

the initial end forces due to member loads; and

AE
L
I, El
2¢23 I3 —ys —L~T3
El EI
233 ‘L‘z% $33 *L*z%
kBB =
5 G
"L
EIl
Sym | b3y ”fz*
’ EI
¢21 -Zi
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AE
L
EI EIl,
~2023 53 — 2377
El Ll
=235 1377
kBA = GJ
& 2
EI El
— ¢33 ]zz $32 ‘]jz“
EI ' El,
¢23 L23 ¢22 T
AE
L
El, M3
263 T3 4’23
El El
2¢33 L32 —¢)33 ]"27:
kAA = GJ
(bt 7,
L1,
Sym P31 I
El,
$21 A

Operating on %5, & , leads to the incremental equations, iec., the three-
dimensional form of (18—13). Assuming the stability {unctions are constant and
taking

2

dp, ~ dP = Ede
| de, I}Z {(“32 — Ugy)(Augy — Auyy) + (ups — tig3)(Aups — Auys) (18-27)
+ r{wp; — @) Awp, — Aw,u)}
we obtain
d&’f =dFy + (kgg + k)A%U, + kg, — kAU , (18-28)
dF 4 = dF + (kpy — k)" AUy + (kay + KIAU,
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where k, is the incremental stiffness matrix due to rotation,

01 ps —P2 p, 0160
LFg, .

p3 + Agl —P203 rp1p3 010

AE LF
k, = 2 p3 + AII; —2ppa 010
Symmetrical (rp,)? 00
0 0
0

-1 1 '
Py = ‘L—(uaz ~Uyy) P = T(“m —Ug3) Py = "L‘(C‘)Bl — Wa1)

If P is close to the member buckling load, one must include additional terms
due to the variation in the stability functions and usc the exact expression for de,.

Kappas’s equations have also been solved explicitly for a monosymmetric
section with warping and shear deformation neglected. Since the equations are
linear, one can write down the general solution for an arbitrary cross section.
It will involve twelve integration constants which are evaluated by enforcing the
displacement boundary conditions. The algebra is untractable unless one
introduces symmetry restrictions.

18—4. SOLUTION TECHNIQUES; STABILITY ANALYSIS

In this section, we present the mathematical background for two solution
techniques, successive substitution and Newton-Raphson iteration, and then
apply them to the governing equations for a nonlinear member system.

Consider the problem of solving the nonlinear cquation

Y(x) =0 (18-29)
Let X represent one of the roots. By definition,
WE) =9 =0 (18-30)

In the method of successive substitution,f (18-29) is rewritten in an equivalent
form,

x = g(x) (18-31)
and successive estimates of the solution are determined, using
XD = ge¥) = g (18-32)

where x® represents the kth estimate.
The exact solution satisfies

I
il
@

(@)

1 See Ref. 9.
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Then,
X — x®tD =g — g® (b)

Expanding g in a Taylor series about x®),
7 =9" + g%z — x¥) + 3g%x — x¥)? + - )
and retaining only the first two terms lead to the convergence measure
% = X = (%~ x|, (18-33)

where &, is between x* and X. . .
In the Newton-Raphson method, i y(X) is expanded in a Taylor series about

x®),

PR = U0 + PR A+ (A 4 =0 (a)
where Ax is the exact correction to x®,
Ax =% - x® (b)
An estimate for Ax is obtained by neglecting second- and higher-order terms:
A
fy —
AT = (18-34)

xEFD = x0  Ax

The convergence measure for this method can be obtained by combining (a)
and (18—34), and has the form

(% = xEOWE = —5E — XNV o= (18-35)
Note that the Newton-Raphson method has second-order convergence whereas

successive substitution has only first-order convergence.
We consider next a set of n nonlinear cquations:

Uo={y ) =0 (18-36)

l//i = ‘/’(xl, Xgyennn Xn)

An exact solution is denoted by X. Also, Y(X) = V.
In successive substitution, (18-36) is rearranged to

ax =¢— g : (18-37)
where a, ¢ are constant, g = g(x), and the recurrence relation is taken as
ax**h = ¢ — g® (18-38)
~ The exact solution satisfies
aXx =c¢ — g (a)
Then,
a® — x**) = —(@ - g") (b)

T See Ref. 9.
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Expanding g in a Taylor series about x®,

=29+ g0 - x®) + - ©
9,1 91,2 " Gu,a
O A i @
O o :
gn. 1 gn, 2 o gn, n
and retaining only the first two terms results in the convergence measure
(x — xt+by = a~ gy (x.; x*) (18-39)

where &, lies between x* and . For convergence, the norm of a~ 'g . must be
less than unity.

The generalized Newton-Raphson method consists in first expanding Y(X)
about x®,

V(E) = ¥ + dp® + L, =0
where . .
d (k) (k) 0 ﬁ'k) v (k)
Y = PP Ax = 5—{'« {x. — x} |
¥y = {clzzpj} _ (18-40)
2 T 02‘/’1

Neglecting the second differential leads to the recurrence relation
AP = YO A0 = y®

x(k+1) — x(k) + Ax(k) (18&41)
The corresponding convergence measure is
PO = x*) = —Ld?yl, (18-42)

Let us now apply these solution techniques to the structural problem. The
governing cquations are the nodal force-equilibrium equations referred to the
global system frame,

V=2, -2, =0 (18-43)

where 2, contains the external nodal forces and — P, ; is the summation of
the member end forces incident on node i, One first has to rotate the member
end forces, (18—26), from the member frame to the global frame using
FO — (g?on)’l'tai;n
ko — (Qon)'l‘kny on (a)

the displacement restraints and write the final equations as
l// =P e P m = 0
P,=P, +P + KU

In our formulation, the member frame is fixed,i.e. R°"is constant. We introduce

(18-44)
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Note that K and P; depend on the axial forces while P, depends on both the
axial force and the member rigid body chord rotation. If the axial forces are
small in comparison to the member buckling loads, we can replace K with
K,, the linear stiffness matrix.

Applying successive substitution, we write

KU=P,-P, - P, (a)
and iterate on U, holding K constant during the iteration:
KU" =P, — P, — P~ (18-45)

We employ (18-45) together with an incremental loading scheme since K is
actually a variable. The steps are outlined here:

1. Apply the first load increment, P,), and solve for U, using K .= K,.
2. Update K using the axial forces corresponding to P,y Then apply
P, and iterate on

K(I)U(n) = Pe(l) + Pe(?.) had Ps-n-l)
3. Continue for successive load increments.
A convenient convergence criterion is the relative change in the Euclidean
norm, N, of the nodal displacements.
N = (UTU)*?
N+ . (18-46)
—=— ] <e (a specified value)
N(n) abs. valuc

This scheme is particularly efficient when the member axial forces are srr}all
with respect to the Euler loads since, in this case, we can take K = K, during

the entire solution phase. ’
In the Newton-Raphson procedure, we operate on s according to (18-41):

ay =~y @)
Now, P, is prescribed so that

dy® = —dP®  ducto AU
—|dP, + dP, + K AU + (dK)Ulgw (18-47)
= —IKI AUlu(n)

i

where K, denotes the tangent stiffness matrix. The iteration cycle is
K?”AUY =P, — PO
Uty = gm 4 AU®
We iterate on (18-48) for successive load increments. This scheme is more

expensive since K, has to be updated for each cycle. However, its convergence
rate is more rapid than direct substitution. If we assume the stability functions

(18~48)
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are constant in forming dP,, due to AU, the tangent stiffness matrix reduces to

dK ~ 0 dP, =~ 0
K, ~K + K,

where K, is generated with (18-28). We include the incremental member loads
in P, at the start of the iteration cycle. Rather than update K, at each cycle,
one can hold K, fixed for a limited number of cycles. This is called modified
Newton-Raphson. The convergence rate is lower than for regular Newton-
Raphson but higher than successive substitution.

We consider next the question of stability. According to the classical stability
criterion,t an equilibrium position is classified as: .

(18-49)

stable d*W,, — d*w, > 0
neutral AW, — d*W, =0 (18-50)
unstable ‘ d*W,, — d*W, < 0

where d*W, is the second-order work done by the external forces during a
displacement increment AU, and d? W, is the second-order work done by the
member end forces acting on the members. With our notation,

2 d o\
d VVQ = 26 Pe AU

T —
d*W, = (7% pm> AU (18-51)
4

= AU'K, AU
and the criteria transform to

J T <0  stable
(AU)K, AU — (E'ﬁ Pe) AU =0  neutral (18-52)
) >0 unstable

The most frequent case is P, prescribed, and for a constant loading, the tangent
stiffness matrix must be positive definite.

To detect instability, we keep track of the sign of the determinant of the
tangent stiffness matrix during the iteration. The sign is obtained at no cost
(ie, no additional computation) if Gauss elimination or the factor method
are used to solve the correction cquation, (18-48). When the determinant
changes sign, we have passed through a stability transition. Another indication
of the existence of a bifurcation point (K, singular) is the degeneration of the
convergence rate for Newton-Raphson. The correction tends to diverge and
oscillate in sign and one has to employ a higher iterative scheme.

Finally, we consider the special case where the loading does not produce
significant chord rotation. A typical example is shown in Fig. 18-4. Both the

+ See Secs. 7-6 and 10-6.
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frame and loading are symmetrical and the displacement is due only to short-
ening of the columns. To investigate the stability of this structure, we delete
the rotation terms in K, and write

K, = K + K, = K(}) (18-53)

where K, is due to a unit value of the load parameter 2. The member axial
forces are determined from a linear analysis. Then, the bifurcation problem
reduces to determining the value of A for which a nontrivial solution of

K + AK)AU =0 ‘ (18-54)

exists. This is a nonlinear eigenvalue problem, since K = K(1).

" v v

7077 ’ /2
Fig. 18—4. Example of structure and loading for which linearized stability analysis
is applicable.
In linearized stability analysis, K is assumed to be K; and one solves
K, AU = —-JK, AU (18-55)

Both K, and K] are symmetrical. Also, K is positive definite. Usually, only
the lowest critical load is of interest, and this can be obtained by applying

inverse iteration] to
(—K)AU

i

7K,AU
(18-56)

>~
i

1
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Index

Associative multiplication, 8

Augmented branch-node incidence ma-
trix, 124, 222

Augmented matrix, 33

Axial deformation, influence on bending
of planar member, 472

Bar stiffness matrix, 180

Bifurcation; see Neutral equilibrium
Bimoment, M¢, 373

Branch-node incidence table, 121, 145

C¢, C,, C,,—coefficients appearing in
complementary  energy  expression
for restrained torsion, 387, 388, 416

Canonical form, 58

Cartesian formulation, principle of vir-
tual forces for a planar member, 465

Castigliano’s principles, 176

Cayley~Hamilton Theorem, 63

Center of twist, 383, 389

Characteristic values of a matrix, 46

Chord rotation. p, 586

Circular helix, definition equation, 84, 86

Circular segment

out-of-plane loading, 504

restrained warping solution, 509
Classical stability criterion

continuum, 256

member system, 601

truss, 170

Closed ring, out-of-plane loading, 503

Cofactor, 19

Column matrix, 4

Column vector, 4

Complementary energy

continuum, 261

member system, 572

planar curved member, 434
restrained torsion, 385; 387, 388
unrestrained torsion-flexure, 301

Conformable matrices, 8, 35

Connectivity matrix, member system, 563

Connectivity table for a truss, 121, 143

Consistency, of a set of linear algebraic
equations, 31, 44

Constraint conditions treated . with La-
grange multipliers, 76, 80
Curved member
definition of thin and thick, 434
thin, 487
slightly twisted, 487

Defect, of a system of linear algebraic
equations, 31
Deformation
for out-of-plane loading of a circular
member, transverse shear, twist, and
bending, 498 )
for planar member, stretching and
transverse shear vs. bending, 454
Deformation constraints
force method, 573
displacement method, 576
variational approach, 583
Deformed geometry, vector orientation,
239
Degree of statical indeterminacy
member, 555, 567
truss, 210
Determinant, 16, 37, 39

‘Diagonal matrix, 10

Differential notation for a function, 70, 72,
79

Dircction cosine matrix for a bar, 119

Discriminant, 40, 59

Distributive multiplication, 8

Echelon matrix, 29

Effective shear area, cross-sectional prop-
erties, 302

Elastic behavior, 125, 248

End shortening due to geometrically non-
linear behavior, 589

Engineering theory of a member, basic
assumptions, 330, 485

Equivalence, of matrices, 27

Equivalent rigid body displacements, 334,
414, 430

Euler equations for a function, 73

Eulerian strain, 234
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First law of thermodynamics, 248
Fixed end forces

prismatic member, 523

thin planar circular member, 528
Flexibility matrix

arbitrary curved member, 515

circular helix, 534

planar member, 462

prismatic member, 345, 521

thin planar circular member, 526
Flexural warping functions, 296, 300fn
Frenet equations, 91

Gauss’s integration by parts formula, 254
Geometric compatibility equation

arbitrary member, 499

continuum, 259, 264

member system, 569

planar member, 463, 466

prismatic member, 335

truss, 160, 212, 216, 223

unrestrained torsion, 279, 315
Geometric stiffness matrix for a bar, 200
Geometrically nonlinear restrained torsion

solution, 595

Green's strain tensor, 234

Hookean material, 126, 249
Hyperelastic material, 248

Incremental system stiffness matrix
member system, 601
truss, 193
Inelastic behavior, 125
Initial stability
member system, 562
truss, 137
Invariants of a matrix, 59, 62
Isotropic material, 252

Kappus equations, 592
Kronecker delta notation, 11

Lagrange multipliers, 76, 80, 583

Lagrangian strain, 234

Lamé constants, 253

Laplace expansion for a determinant, 20,
38

Linear connected graph, 218

Linear geometry, 120, 143, 237

Linearized stability analysis, 602

Local member reference frame, 92

Marguerre equations, 449, 456

Material compliance matrix, 249

Material rigidity matrix, 249

Matrix iteration, computational method,
201

Mazxwell’s law of reciprocal deflections,
356

Member, definition, 271

Member buckling, 588

Member force displacement relations, 537,
546, 556

Member on an elastic foundation, 384, 369

Mesh, network, 220

Minor, of a square array, 19

Modal matrix, 52

Modified Neuton-Raphson iteration, 601

Moment, My, 375

Mushtari’s equations, 444

Natural member reference frame, 92

Negative definite, 58

Negligible transverse shear deformation,
planar member, 443, 454, 498

Network, topological, 220

Neutral equilibrium, 170, 256, 601

Newton-Raphson iteration, member sys-
tem, 598

Normalization of a vector, 49

Null matrix, 4

One-dimensional  deformation measures,
335, 338, 432
arbitrary member, 491
Orthogonal matrices and trnasformations,
50, 53
Orthotropic material, 250, 251

Permutation matrix, 42, 135
Permutation of a set of integers, 16, 37
Piecewise linear material, 126, 146
Planc curve, 98, 425
Poisson’s ratio, 252
Positive definite matrix, 58, 63
Positive semi-definite matrix, 58
Postmultiplication, matrix, 8
Potential energy function, member system,
571
Premultiplication, matrix, 8
Primary structure
member system, 568
planar member, 463
prismatic member, 354
truss, 211
Principle minors, 55
Principle of virtual displacements
member system, 570
planar member, 442
Principle of virtual forces
arbitrary member, 490, 492, 512
member system, 571
planar member, 435, 458
prismatic member, 338, 351

Quadratic forms, 57
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Quasi-diagonal matrix, 15, 38
Quasi-triangular matrix, 39

Radius of gyration, 434
Rank of a matrix, 27, 42, 43
Rayleigh’s ‘quotient, 75, 79
Reissner’s principle ’
continuum, 270
member, 383, 414
member system, 573
Relative minimum or maximum value of a
function, relative extrema, 66
Restrained torsion solution, prismatic
member
linear geometry, 391
nonlinear geometry, 595
Restrained torsion stress distribution and
cross-sectional parameters
channel section, 401
multicell section, 411
symmetrical I section, 398
thin rectangular celi, 407
Rigid body displacement transformation,
109
Rotation transformation matrix, 101, 232
Row matrix, 4

Self-equilibrating force systems, 160, 211,

258
member systems, 568

Shallow member, assumptions, 448

Shear center, 297, 300, 309, 378, 389

Shear flow, 287

Shear flow distribution for unrestrained
torsion, 308

Similarity transformation, 53, 62

Simpson’s rule, 475

Singular matrix, 22

Skew symmetrical matrix, 11

Small strain, 120, 235

Small-finite rotation approximation, 238

Squarce matrix, 4

Stability of an equilibrium position, 171,
195

Stability functions (¢), prismatic member,
589

Statically equivalent force system, 103, 106

Statically permissible force system, 159,
216, 257
Stationary values of a function, 67, 79
Stiffness matrix
arbitrary curved member, 516, 520

modification for partial end restraint,
535
prismatic member, geometrically non-
linear behavior, 588, 595
prismatic member, linear geometry, 522
Strain and complementary energy for pure
torsion, 280
Strain energy density, 248
Stress and strain component trnasforma-
tions. 249
Stress components
Eulerian, 242
Kirchhoff, 246
Stress function, torsion, 276
Stress resultants and stress couples, 272
Stress vector, 240
Stress vector transformation, 242
Submatrices (matrix partitioning), 12, 36
Successive substitution, iterative method
member system, 597
truss, 193
Summary of system equations, force equi-
librium and force displacement, 561
Symmetrical matrix, 11, 35
System stifiness matrix
member system, 548, 550, 565
truss, 179, 180, 188, 206 -

Tangent stiffness matrix
for a bar, 193
prismatic member, 590, 596
Tensor invariants, 232
Torsion solution, rectangle, 281
Torsional constant, J, 276, 278, 323
Torsional warping function, 274, 377
Transverse orthotropic material, 252
Transverse shear deformation
planar member, 454, 498
prismatic member, 355
Trapezoidal rule, 474
Tree, network, 220
Triangular matrix, 12
Two-hinged arch solutions, 467, 470

Unit matrix, 10

Variable warping parameter, f, for re-
strained torsion, 372
Vector, definition (mechanics), 4fn

Work done by a force, definition, 153, 156



