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GENERAL FORMULATION-LINEAR SYSTEM CHAP. 17 

in (a) and (17-131): 
IIp, v + (T 1 - P)(BU + H3) 

-V = (¥- /o)Tk'(Y -) (17-132) 
= A1BU + A1H3 + A2U 2 

The variation of HIp considering U as the independent variable is 

drfp = AUT[BT(P, - P) + (BTATk'AIB)U 
+ BTAk'(A 1H3 + A2 l 2 -'')] (g) 

= AUT[(BTKlB)U - BTH 4] 

Requiring [,I to be stationary for arbitrary AU results in (17-126). Note that 
we could have used the reduced form for V. i.e., equation (d). Also, we still 
have to determine the constraint forces. 
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18-1. INTRODUCTION 

In this chapter, we extend the displacement formulation to include geometric 
nonlinearity. The derivation is restricted to small rotation, i.e., where squares 
of rotations are negligible with respect to unity. We also consider the material 
to be linearly elastic and the member to be prismatic. 

The first phase involves developing appropriate member force-displacement 
relations by integrating the governing equations derived in Sec. 13-9. We treat 
first planar deformation, since the equations for this case are easily integrated 
and it reveals the essential nonlinear effects. The three-dimensional problem 
is more formidable and one has to introduce numerous approximations in order 
to generate an explicit solution. We will briefly sketch out the solution strategy 
and then present a linearized solution applicable for doubly symmetric cross­
sections. 

The direct stiffness method is employed to assemble the system equations. 
This phase is essentially the same as for the linear case. However, the governing 
equations are now nonlinear. 

Next, we described two iterative procedures for solving a set of nonlinear 
algebraic equations, successive substitution and Newton-Raphson iteration. 
These methods are applied to the system equations and the appropriate re-
:.,rrence relations are developed. Finally, we utilize the classical stability
criterion to investigate the stability of an equilibrium position. 

18-2. MEMBER EQUATIONS-PLANAR DEFORMATION 

Figure 18-1 shows the initial and deformed positions of the member. The 
centroidal axis initially coincides with the X direction and X2 is an axis of 
symmetry for the cross section. We work with displacements (ul, u2, c3), 
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FR-, ANALYSIS OF GEOMETRICALLY NONLINEAR SYSTEMS CHAP. 18 
Boundary Conditions 

For x = 0:distributed external force (b2), and end forces (F1, F2. M713) referred to the 
initial (X 1-X2-X 3) member frame. The rotation of the chord is denoted by 

U = Al or IF,| = -FA, 
p3 and is related to the end displacements by 

U2 = UA2 or IF2 + Fu 2.,0o= -FA2 (c) 
tB 2 UA2 (18-1)-

P3= L = 0)A 3 Or IMIo -MA3 
For x = L: 

The governing equations follow from (13-88). For convenience, we drop the or IF,IL =+ FB 

U2 = UB2 or IF2 + F1 U2 ,xL = FB2 (d)subscript on x1, and M 3, (03, i3. Also, we consider hb = m3 = 0. 

CO) = OB3 or IMIL = + MB3 

Integrating (a) leads to 
x 2 

FI = FB1 - P 

F2 + PU2. = PC 2 - fX b2 dx (e) 

M3 - Pu2 = - C3P - C2 Px + fx(Sx b2 dx)dx 

where C2, C3 are integration constants. We include the factor P so that the 

dimensions are consistent. Thc axial displacement ilt is determined from the 

first equation in (a), rv~~~~~182PL I 

2u1 - UA1 = (AE (u)2,. dx (18-2) 

Combining the remaining two equations in (a), we obtain 

2. xxM = EI1 + G- + G-A b 2 
(f) 

Finally, the governing equation for u2 follows from the third equation in (e), 

2
U2 ,xx + t

2 = #u(C 2 + C3) + .Lb2 - (b 2 dX)dd 
2

where~ ~ ~~P A 

Fig. 18-1. Notation for planar bending. where (18-3) 
-P 

2
t1

EquilibriumEquations EI +--

F 1, = 0 
GA2 

(a) The solutions for u2 and M are 
(Ft2, + F2 ) + b2 =0 

dx 2 =C COS sx + C5 sinx + C2x + U2b+ C 3 
F2 - -Mx 

CO I (l + GA) .x C4 sin + Cs COSx) 
(18-4) 

Force-DisplacemenltRelations 
2 + C2 + GA 2 b2 dx +( + GA 2 U2b,x

F, u1 ,, _) 
FE =u1X + 2(U2,) 

(b) where Ut2,denotes the particular solution due to b2. If b2 is constant,
Fi2 
F2 =U2.X - CO 

GA2 
U2b {GA 2 x (18-5)

12)M P GA2 2 t.c 
t- = O(, X 
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Enforcing the boundary conditions on U2, co at x = 0, L leads to four linear 
equations relating (C2 '" C5). When the coefficient matrix is singular, the 
member is said to have buckled. In what follows, we exclude member buck­
ling. We also neglect transverse shear deformation since its effect is small for a 
homogeneous cross section. 

We consider the case where the end displacements are prescribed. The net 
displacements are 

lnet = u' = (I - u2b),=O, L (18-6) 
Onet = O' = (C - U2b,x)x=O, L 

Evaluating (18-4) with A2 = oo, we obtain 

C2 = (01. - tC 5 

C3 = UA - C4 

1 - cos L co - o 
C4 = - C5 .....

sin JtL It sin tL (18-7) 

Cs = (u' - u oL)sin L - (CL (o) a) 

D = 2(1 - cos uL) - ML sin I1L 

Note that D 0 as FtL - 2 . This defines the upper limit on P, i.e., the member 
buckling load: 

47r2 EI 
- PInax = L2 (18-8) 

The end forces can be obtained with (c-e). We omit the algebraic details 
since they are obvious and list the final form below. 

MA3 = M 3 + 0 2 ) - - UA2) 
r r I 1 

MB 3 - MB 3 -+ I b4)20A3 (- uA2)I
LLEI3F- 3 (,blB3 

- L A ) 

=FA 2 F 2 L [ B3 + O)A3 - (UB2 U2) 2 - UA2 ) (18-9) 

[CB3 + (CA3 - B2 UA2)1 + - (U2 -FB2 = F 2 - L22 -
P = FeI T', = -P 

PL I2 PL 
(u ) 2

UB II =- j x dx - - eL 
fo' IA 

where 
D = 2(1 - cos ML) - uL sin utL 

Do = FtL(sin ML - bIL cos ItL) 
Dq 2 = L(uL - sin /L) 

D03 = D(4)1 + 0'2) = (,UL)2 (1 - cos /ML) 

SEC. 18-2. MEMBER EQUATIONS-PLANAR DEFORMATION 

The i functions were introduced by Livesley (Ref. 7), and are plotted in Fig.
18-2. They degenerate rapidly as ylL - 2 . The initial end forces depend on 
the transverse loading, b2. If b2 is constant, 

A2= FB2 - bL 
2 

' bL 2 
(18-10)B3 = (L)2 (1 - 2)) 

MA3 = - B3 

In order to evaluate the stiffness coefficients, P has to be known. If one end, 
say B, is unrestrainedwith respect to axial displacement, there is no difficulty 
since FBI is now prescribed. The relative displacement is determined from 

P = FI 

PL 
u1 = UA1 + A - Ler 

er - (U2 )2 dx = e( jL, uA2,uB, OA, COB) 

2er = 5(C)2 + [4 ( - t2) + ¢i6 (cJB3 - J-)A3) C5 

+ l)7(O.B3 - 09A3)2 + -2 ) 

Dq04 = L sin L (18-11) 

C'5 =2 
C,

(/L)B3 
3b3 

- (ic3) + (14 
2- UA2 0, 

134- o3 

7= (L sin tL)2 gtL(ML - sin IL cos iL) + 2(1 - cos 
/tL)2 

¢6 = (1 - cos uL) 7 -,-2T 

5 (1- Cos L){ )~ ( L)22 ,tL2 9 _ sin L cos MIIll. 
I '- " e ' ' k ) J 

We call er the relative end shortening due to rotation. However, when both 
axial displacements are prescribed, we have to resort to iteration in order to 
evaluate P since e, is a nonlinear function of P. The simplest iterative scheme is 

p(i+1) = AE 
nL- ( 
r

- u4 1) + AEe (18-12) 

and convergence is rapid when ML is not close to 2. 
Expressions for the incremental end forces due to increments in the end 

displacements are needed in the Newton-Raphson procedure and also for 
stability analysis. If L is not close to 27, we can assume the stability functions 
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where the incremental initial end forces are due to loading, b2 . We can 
00 obtain an estimate for de,. by assuming Au 2 x is constant. 
t 

ude, 1 u Au dx-2 U2,)x( 
UA2/ B2 ALA (18-14) 

.... d V 

The coefficients in (18-13) are tangent stiffnesses. They are not exact since
02 1 

we have assumed i and A 2, constant. To obtain the exact coefficients,1 

we have to add
1 

+¢>2 1 

LE oAl + o)B 2-- '1, d(2uL)
1 L ¢;· · L 

1 
dL (18-15)d0 = 

I df(PL) 
I L 

Il=dPd(p.L) -
2LI3 ,1 

6 11 2 
to d,, and similar terms to dMBr, ..., dFl. The derivatives of the stability 
functions are listed below for reference: 

2(L L)2 sin 1cL I+3 
4 = L + 

D ML 

I 4d312 = -27 (18-16) 
(L 1i 2112~E = 

I
I 

'l =- f{1 - 0/ + 03} + (3; - L) 

-I I 52= 13, 41 
00 We also have to use the exact expression for de,, 

Fig. 18-2. Plot of the q) functions. e r/e, - e.
de, = -de, 

Au 2 + -i AuB2 + --
_e. 

ACO +.. -- - A(ML) (18-17)
'I zI'A2 vUB2 (W4 OWtB ( AL) 

are constant and equal to their values at the initial position, when operating 
in the equation for dP. An improvement ontl (18-14) is obtained by operating 

on (18-9). The resulting expressions are on (18-11), and assuming %ILis constant. 
AWA3 [ 03 (AuI 2 - AuA2)El 

dMB3 = dM43 + L | A0A3 + 2 ALCO3L- A 18-3. MEMBER EQUATIONS-ARBITRARY DEFORMATION 

The positive sense of the end forces for the three-dimensional case is shownA 
2 El f3 AO 3-A -A2) in Fig. 18-3. Note that the force and displacement measures are referred to 

dF.123= dF~2 -- EL-- Acos3 + ACOA3 -- (A 2 - AUA2) the fixed member frame. The governing equations for small rotations were 
= dFApd u 2 dP (18-13) derived in Sec. 13-9. They are nonlinear, and one must resort to an approximate 

- (AuUBB AUA2) - L method such as the Galerkin schemet in which the displacement measures are 
L 2 

expressed in terms of prescribed functions (of x) and parameters. The problem 

dFs2 = dF 2 - (dFA 2 - dFA2) is transformed into a set of nonlinear algebraic equations relating the param­

dFl = dP dFA1 =- dP eters. Some applications of this technique are presented in Ref. 5. 

dP = AE (AU - Au 1 ) + AE de, 1-This method is outlined in Sec. 10-6.L 
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Force-DisplacemnentRelations 

A-
__ + ± )1. (3u)s2). - . U. 3, 1)u,, + 

1 
( 2, 

12 
+u 

2, 
3,+ + 

+ , 
, 
)

) + 2

X3 r Ml+ 
U,2, - (03 = 

G A12 + 
A23 J 7 

, )B1 

J
3, 1 2 G A23 A3 

MJ, 
01, -GJ fI = EI1r 4, 

M2 M 3FZ.1 (903,1­l 
,2,1 =EI2 El 3 

1 
XB1 f + o, 1 = (CrM + X3 rF 2 + X2 rF 3 ) 

-*- X1 GJ 

Boundary Conditions (+' for x = L, - for x = 0) 

P= +F1 

P(Us, + -X J)o,1) + F2 = + F23 x3 P2 L 
P(us3 1 - 2(). 1) + F3 = F3 

-

Note: The centroidal axis coincides Mr + MT + P( 3 Us2 , 1 - 2u 3 , 1 + 1(01, 1) -=iT 

with X1. X2 and X3 are prin- M 2 = ±M 2 M 3 = M M 4 , = ± M4, 
cipal inertia directions. 

To interpret the linearization, we consider (13-81). If one neglects the 
Fig. 18-3. Notation for three-dimensional behavior. nonlinear terms in the shearing strains, 

Y12 - u/1 , 2 + 2. 1 (a)If we consider b1 = 0, the axial force F1 is constant along the member and the 
Y13 Ul1 ,3 + 3. 1nonlinear terms involve )1 and coupling terms such as F'2u 3, 1; (otM 2 ; etc. 

called the Kappus takes the extensional strain asNeglecting these terms results in linearized equations, 
equations. Their form is: 

1U 1 +[ll tl±, + 3 , + (x
2 

+ X3)o, 1 (b)+ 1x-=X3-o 

Equilibrium Equations and assumes 
F1 = P Ib,(X22 + X32)dA = 

d 'fX3(X2 - x3)dA 0 (c) 
[P(ts2,1 + - 3 0 1, 1) + F2 ] + b2 = 0 j 2(x" x2)cdA 0dx, fjjr(X22 + =3 

d 
d- [P(us3, I - -x2)1,1) + F3] + b3 = 0 

one obtains (13-81). Equations (c) are exact when the section is doubly sym­
metric. Assumptions (a) and (b) are reasonable if col, 1 is small w.r. to u2 , and 

d - U3, . However, they introduce considerable error when o , is the dominant 
1,, + M;., +±, 1 + r [P(7 3u,,, 1 - X2US 3, I + jill, ,)]= 0 term. This has been demonstrated by Black (Ref. 5). 

M2 .1 - F3 + m2 = 0 When the cross section is doubly symmetric, 

M3,1 + F2 + m3 = 0 (18-18) 1 
X2 = 3 = X2r = X3r = - 0 

,,M11 - M' + m¢ = 0 A2 3 (18-19) 
1 = r2 

= + + / A 
91A 
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(r is the radius of gyration with respect to the centroid) and the problem 
uncouples to­

1. Flexure in X1 -X 2 plane 
2. Flexure in X1-X3 plane 
3. Restrained torsion 

We have already determined the solution for flexure in the X1-X2 plane. 

If we introduce a subscript for yt and bj, 

2
(2) =- (A13)2 -P (18-20) 

021 = (C2 L) 0231 = l(3L ) 

and then replace 
112 

CO2 --C)3U3 

4 -U 2 
(t)3 - - ) 2U3 (18-21)

F2 - F3 --­>M3M2. 

F3 - -F 2 M3 - M2 

in (18-9), (18-13), we obtain the member relations for flexure in the X1-X 3 
frame. For example, 

MA3MA3 + LL Ž 23 (11B2 - UA2jMA3 -- 40210A3 + 022(B3L 
(18-22) 

El [,,(/)31()A + )32(B2 + LA3) -RAI = Mi 2 + -L 2 +Ii B (p3 i)] 

and 
F 2 =... 

F 3 2 L B2 - 0)42 - (B3 - ) - ( - UA3) 

The expressions for the axial end forces expands to 

FBt =P FA = -P 
AE 

P -(UBI - u) + AE(e,l + er2 + er3)L 
2r {L; d (18-23) 

er 2 = 2L (U2.x)
2 

dxl 
e'. = - O2 dl 

er3 2L (u3. x)2 dx 

where er3 is obtained from er2 by applying (18-21). 
We generate the restrained torsion solution following the procedure described 

in Example 13-7. If the joints are moment resisting (i.e., rigid), it is reasonable 
to assume no warping, which requires f = 0 at x = 0, L. The corresponding 
solution is summarized below: 
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r2 P 2 GJ I + P 

GJ E,I, 1 + C,.(1 + P) 

GJ 
MB1 -IL ()B1 - (A 1) 

MA = -MB1 

1+P 
(18-24) 

sinh L LL( + Cr(1 + P)) 

= ±~GJ(1 + P) 

iLx)+ ( C(1 P)) - x + - ssinh (1- coh 

We neglect shear deformation due to restrained torsion by setting C, = 0. 
If warping restraint is neglected, 

ErI, = => it 2 = (18-25)
4),=> + P 

At this point, we summarize the member force-displacement relations for 
a doubly symmetric cross section. For convenience, we introduce matrix 
notation: 

B {FF2F 3 MlM- = 2 3}B 

1[ B = {U1llU2 U3 0)l2(0 2 3} 

etc. (18-26) 
9B- = 5-ij + kg36 11' + k,("?9 + FIr 

'FA = 'A
4 + (kBA)'0/B + kAAqlA - 3 

where ',Ycontains nonlinear terms due to chord rotation and end shortening 

1 3 - tlA3 ); ; 0; 0}; I contains= {AE(er, + er2 + er 3 ); P (UB2 - UA2 ); -L (UBforces duetoL 
the initial end forces due to member loads; and 

AE 

L, 

EI3 EI3 
2523 L 3 

El2 El2 

L3 0 3 3 L 2 

kBB = 1GJ 
¢, L 

El2
Sym 

L 

21 EI 3 
L 
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. 

AE where k, is the incremental stiffness matrix due to rotation, 

IL El2 0 P3 -P2 r2pi 0 0 

EI3 
EI3 2 LF,, . 

AE - P2P3 2 P1P3 0O 0-2423 -L - 23
4 

PSymmetr+ical 

El 2 AE 2 L+Bl 
33 - L |-,2P1P2 0 i 

IEGJ Symmetrical (r2p1)
2 00 i 0 

- t__L ...... 0OO 
- 2c)33 EIL2 I O 0EI2- 033 L-2 ,/32 -

lI 2 

I -1 1 
EI3 EI3 i P3 - LL-(UB2 - UA2) P2 = L (UB3 - 11A3) P = L-(OBl - OA)L 

023 L2 )22L 
If P is close to the nlember buckling load, one must include additional terms 
due to the variation in the stability functions and use the exact expression for de,. 

. 

AE Kappas's equations have also been solved explicitly for a monosymmetric 
L section with warping and shear deformation neglected. Since the equations are 

El33
EI 3 linear, one can write down the general solution for an arbitrary cross section. 

2423 L 423720~,i It will involve twelve integration constants which are evaluated by enforcing the 
displacement boundary conditions. The algebra is untractable unless one

El, E12 
2033 L-7 introduces symmetry restrictions. 

.... 
_.. 

I01 GJ--
L-J 18-4. SOLUTION TECHNIQUES; STABILITY ANALYSIS 

.......,_


In this section, we present the mathematical background for two solution 
Sym .431 LL_ techniques, successive substitution and Newton-Raphson iteration, and then 

EL3 apply them to the governing equations for a nonlinear member system. 
021 L Consider the problem of solving the nonlinear equationL 

(x)= 0 (18-29) 

Operating on 3'BF, -SAleads to the incremental equations, i.e., the three- Let x represent one of the roots. By definition, 
dimensional form of (18-13). Assuming the stability functions are constant and ¢(/)-- ¢= 0 (18-30) 
taking 

In the method of successive substitution,t (18--29) is rewritten in an equivalent 
2 

r form, 
dqt P = r- dP x = g(x) (18-31)GJ 

(18-27) and successive estimates of the solution are determined, using 
de, L

2 
{(UB2 - UA2)(AUB2 - AUA 2 ) + (B3 - 11A 3)(AUB3 - AUA3 ) 

X(k +1) = g(x(k)) _ (k) (18-32) 
+ r2 

((OB1 - (OAl)(AB1 - AOA1)} 
where x(k) represents the kth estimate. 

we obtain The exact solution satisfies 
x = 9 (a) 

deB = di7B + (kBB + kr)A/inB + (kBA - kr)Aq/A 

dgA = d> + (kBA - kr)T AWIB + (kAA + k,)A 0°IA 
(18-28) 

t See Ref. 9. 
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Then, 
- _ g(k) (b) 

Expanding g in a Taylor series about x(k), 

g(k)g(k) ±t g~'(i~~ - x(k))+ ± fg( '- x(k))2 + ... (c)+ (k)tXUX_ \()) + Igkx,X _ k) 

and retaining only the first two terms lead to the convergence measure 
-- + 1) = ( X(k))fgxl (18-33) 

where 5k is between x(k) and T. 
In the Newton-Raphson method,t q() is expanded in a Taylor series about 

¢() = V,(k) + Ok X j-(,AX)2 + -. = 0 (a) 

where Ax is the exact correction to x(k), 
Ax = - x(k) (b) 

An estimate for Ax is obtained by neglecting second- and higher-order terms: 

Ax(k) = _/(k)
(k) (18-34)

x(k) x.(k) + Ax( 
x (k+ ) = X(k) + (k) 

The convergence measure for this method can be obtained by combining (a) 
and (18-34), and has the form 

( - x(k +l)) ¢ (k -= (S - X?(k)) 2 
I '.Ix=,, (18-35) 

Note that the Newton-Raphson method has second-order convergence whereas 
successive substitution has onlyfirst-order convergence. 

We consider next a set of n nonlinear equations: 

, = / , , 2 mn}= 0 (18-36),/ = ¢,X¢. X2,... -, XJ) 
An exact solution is denoted by . Also, qi(K) = . 

In successive substitution, (18-36) is rearranged to 

ax = - g (18-37) 

where a, c are constant, g = g(x), and the recurrence relation is taken as 

axik+ 1)= C -- g(k) (18-.38) 
The exact solution satisfies 

a =c - (a) 
Then, 

~ 
a(~ - x(k+ )) = _(g - g(k)) (b) 

f See Ref. 9. 
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Expanding g in a Taylor series about x(k), 

= g(k) + g(k)_
Ix_~x +I

x(k)) 
·
+ ... 

. ,n (c),2· 
F,, g1 ,2 g, 1 

F- g]j _ 92,1 9212 '. 9, n2 
(d)g= x Ln g,, 2. 

Lg,,.I g , 2 ... gn,,,j 
and retaining only the first two terms results in the convergence measure 

(x - x(k+ ))= a - lg, I (x - x(k)) (18-39) 

where 5k lies between xk and . For convergence, the norm of a- g, must be 
less than unity. 

The generalized Newton-Raphson method consists in first expanding ()
about x), 

,(k)= q,!i) + + f(k)dd2J = 0 
where 

d*f(k)(= Ax , , x} 

d2_, = d2¢0} (18-40) 

d_,j = (x)T -V(Ax) 
L',,X,. Xi 

Neglecting the second differential leads to the recurrence relation 

d,4 (k)= (k) AX(k)= _/(k) 
x(k+ 1)= x(k) + AX(k) (18-41) 

The corresponding convergence measure is 

"I( - x (k + 1)) = -1 d2qL, (18-42) 

Let us now apply these solution techniques to the structural problem. The 
governing equations are the nodal force-equilibrium equations referred to the 
global system frame, 

= p, - =0 (18-43) 
where '~e contains the external nodal forces and -P, i is the summation of 
the member end forces incident on node i. One first has to rotate the member 
end forces, (18-26), from the member frame to the global frame using 

!o = ( ,on)y.-

ko 
= ()k.Foon (a) 

In our formulation, the member frame is fixed, i.e. g," is constant. We introduce 
the displacement restraints and write the final equations as 

¢ =P, -P., =0 
P., P + Pr + KU (18-44) 
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Note that K and Pi depend on the axial forces while P,. depends on both the 
axial force and the member rigid body chord rotation. If the axial forces are 
small in comparison to the member buckling loads, we can replace K with 
KI, the linearstiffness matrix. 

Applying successive substitution, we write 

KU = Pe-Pi - P, (a) 

and iterate on U, holding K constant during the iteration: 

KU(") = P - Pi - P(n-l (18-45) 

We employ (18-45) together with an incremental loading scheme since K is 
actually a variable. The steps are outlined here: 

1. Apply the first load increment, Pe(1), and solve for U(,,, using K = K. 
2. Update K using the axial forces corresponding to Pe(l) Then apply 

Pe(2 ) and iterate on 

K()U(" = Pe(l) + Pe( 2 ) - p(n-

3. Continue for successive load increments. 

A convenient convergence criterion is the relative change in the Euclidean 
norm, N, of the nodal displacements. 

/2N = (UTU)1

N(n+1) 
< e (a specified value) 

(18-46) 
N1 ) abs.vauc 

This scheme is particularly efficient when the member axial forces are small 
with respect to the Euler loads since, in this case, we can take K = K during 
the entire solution phase. 

In the Newton-Raphson procedure, we operate on //according to (18-41): 

dqP(') - _ (n) (a) 

Now, Pe is prescribed so that 

d+(") = -dP(') due to AU 
=- - dPi + dP, + K AU + (dK)IJUl,. (18-47) 

= -IK AUI U,. 

where Kt denotes the tangent stiffness matrix. The iteration cycle is 

K?") AU(n) = Pe - P() 
(18-48)

U(n +1) = U(n) + U 

We iterate on (18-48) for successive load increments. This scheme is more 
expensive since Kt has to be updated for each cycle. However, its convergence 
rate is more rapid than direct substitution. If we assume the stability functions 

SEC. 18-4. SOLUTION TECHNIQUES; STABILITY ANALYSIS 

are constant in forming dP,,, due to AU, the tangent stiffness matrix reduces to 

dK 0 dPi 0 
K,t K + K, (18-49) 

where K, is generated with (1.8-28). We include the incremental member loads 
in Pe at the start of the iteration cycle. Rather than update Kt at each cycle, 
one can hold Kt fixed for a limited number of cycles. This is called modified 
Newton-Raphson. The convergence rate is lower than for regular Newton-
Raphson but higher than successive substitution. 

We consider next the question of stability. According to the classical stability
criterion,? an equilibrium position is classified as: 

stable d2W,, -d2We > 0 
neutral d2W - d22,We = 0 (18-50)
unstable d2 Wm- d2We < 0 
where d2W is the second-order work done by the external forces during a 
displacement increment AU, and d2W., is the second-order work done by the 
member end forces acting on the members. With our notation, 

d2W = ( Pe)AU 

d2 W,= (d P)TAU (18-51) 

= AUTK, AU 
and the criteria transform to 

<0 stable 

0 neutral(AU) TKAU - (PAe)TU (18-52) 
>0 unstable 

The most frequent case is P, prescribed, and for a constant loading, the tangent
stiffness matrix must be positive definite. 

To detect instability, we keep track of the sign of the determinant of the 
tangent stiffness matrix during the iteration. The sign is obtained at no cost 
(i.e., no additional computation) if Gauss elimination or the factor method 
are used to solve the correction equation, (18-48). When the determinant 
changes sign, we have passed through a stability transition. Another indication 
of the existence of a bifurcation point (K, singular) is the degeneration of the 
convergence rate for Newton-Raphson. The correction tends to diverge and 
oscillate in sign and one has to employ a higher iterative scheme. 

Finally, we consider the special case where the loading does not produce 
significant chord rotation. A typical example is shown in Fig. 18-4. Both the 

t See Secs. 7-6 and 10-6. 
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frame and loading are symmetrical and the displacement is due only to short- 4: BORGERMEISTER, G.. and H. STEUP: Stabilitis.theorie, Part 1, Akademie-Verlag, 
Berlin, 1957.ening of the columns. To investigate the stability of this structure, we deletet 

the rotation terms in K, and write 5. CHILVER, A. H., ed.: Thin-Walled Structures, Chatto & Windus, London, 1967. 
6. VLASOV, V. Z.: Thin Walled Elastic Beans, Israel Program for Scientific Transla-

Kt = K + K = K,(,) (18-53) tions, Office of Technical Services. U.S. Dept. of Commerce, Washington, D.C., 1961. 
7. LiVEsLEY, R. K.: Matrix Methods of Structural Analysis, Pergamon Press, London,

where K' is due to a unit value of the load parameter a2. The member axial 1964. 
forces are determined from a linear analysis. Then, the bifurcation problem 8. ARGYRIS, J. H.: IRecent Advances in Matri Metholds of StructuralAnalysis, Pergamon
reduces to determining the value of )2for which a nontrivial solution of Press, London, 1964. 

(K + 2AK)AU = O (18-54) 
9. HILDEBRAND, F. B.: Introlduction to Nutnerical Analysis, McGraw-Hill, New York, 

1956. 
exists. This is a nonlinear eigenvalue problem, since K = K(2). 10. GALAMBOS, T. V.: Structural Members: and Frames, Prentice Hall, 1968. 

11. BRushI, D. and B. ALMROTH: Buckling of Bars, Plates, and Shells, McGraw-Hill, 

2X IX 2X New York, 1975. 

I Iq
I I 

I 
I 
I 

7 77///,7 

Fig. 18-4. Example of structure and loading for which linearized stability analysis 
is applicable. 

In linearized stability analysis, K is assumed to be K1 and one solves 

K AU = -2K,. AU (18-55) 

Both K, and K' are symmetrical. Also, K, is positive definite. Usually, only 
the lowest critical load is of interest, and this can be obtained by applying 
inverse iteration to 

(-K;)AU = 72K,AU 

- 1 (18-56)
=. 
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Index 

Associative multiplication, 8 Constraint conditions treated. with La-
Augmented branch-node incidence ma- grange multipliers, 76, 80 

trix, 124, 222 Curved member 
Augmented matrix, 33 definition of thin and thick, 434 
Axial deformation, influence on bending thin, 487 

of planar member, 472 slightly twisted, 487 

Bar stiffness matrix, 180 
Bifurcation; see Neutral equilibrium 

Defect, of a system of linear algebraic 

Bimoment, MO}, 373 
equations, 31 

Deformation
Branch-node incidence table, 121, 145 for out-of-plane loading of a circular 

member, transverse shear, twist, and
C4, C., C,,,.-coefficients appearing in bending, 498

complementary energy expression for planar member, stretching and
for restrained torsion, 387, 388, 416 transverse shear vs. bending, 454

Canonical form, 58 Deformation constraints
Cartesian formulation, principle of vir- force method, 573

tual forces for a planar member, 465 displacement method, 576
Castigliano's principles, 176 variational approach, 583
Cayley-Hamilton Theorem, 63 Deformed geometry, vector orientation,
Center of twist, 383, 389 239
Characteristic values of a matrix, 46 Degree of statical indeterminacy
Chord rotation. p, 586 member, 555, 567
Circular helix, definition equation, 84, 86 truss, 210Circular segment Determinant, 16, 37, 39

out-of-plane loading, 504 Diagonal matrix, 10
restrained warping solution, 509 Differential notation for a function, 70, 72,

Classical stability criterion 79
continuum, 256 Direction cosine matrix for a bar, 119
member system, 601 Discriminant, 40, 59 
truss, 170 Distributive multiplication, 8

Closed ring, out-of-plane loading, 503 
Cofactor, 19 
Column matrix, 4 Echelon matrix, 29 
Column vector, 4 Effective shear area, cross-sectional prop-
Complementary energy erties, 302 

continuum, 261 Elastic behavior, 125, 248 
member system, 572 End shortening due to geometrically non­
planar curved member, 434 linear behavior, 589 
restrained torsion, 385; 387, 388 Engineering theory of a member, basic 
unrestrained torsion-flexure, 301 assumptions, 330, 485 

Conformable matrices, 8, 35 Equivalence, of matrices, 27 
Connectivity matrix, member system, 563 Equivalent rigid body displacements, 334, 
Connectivity table for a truss, 121, 143. 414, 430 
Consistency, of a set of linear algebraic Euler equations for a function, 73 

equations, 31, 44 Eulerian strain, 234 
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First law of thermodynamics, 248

Fixed end forces 

prismatic member, 523

thin planar circular member, 528


Flexibility matrix 
arbitrary curved member, 515

circular helix, 534

planar member, 462

prismatic member, 345, 521

thin planar circular member, 526


Flexural warping functions, 296, 300fn 
Frenet equations, 91


Gauss's integration by parts formula, 254

Geometric compatibility equation 

arbitrary member, 499

continuum, 259, 264

member system, 569

planar member, 463, 466

prismatic member, 355

truss, 160, 212, 216, 223

unrestrained torsion, 279, 315


Geometric stiffness matrix for a bar, 200

Geometrically nonlinear restrained torsion 

solution, 595

Green's strain tensor, 234


Hookean material, 126, 249

Hyperelastic material, 248


Incremental system stiffness matrix 
member system, 601

truss, 193


Inelastic behavior, 125

Initial stability 

member system, 562

truss, 137


Invariants of a matrix, 59, 62

Isotropic material, 252


Kappus equations, 592

Kronecker delta notation, 11


Lagrange multipliers, 76, 80, 583

Lagrangian strain, 234

Lame constants, 253

Laplace expansion for a determinant, 20,


38

Linear connected graph, 218

Linear geometry, 120, 143, 237

Linearized stability analysis, 602

Local member reference frame, 92


Marguerre equations, 449, 456

Material compliance matrix, 249

Material rigidity matrix, 249

Matrix iteration, computational method, 

201


Maxwell's law of reciprocal deflections, 
356


Member, definition, 271

Member buckling, 588

Member force displacement relations, 537,


546, 556

Member on an elastic foundation, 384, 369

Mesh, network, 220

Minor, of a square array, 19

Modal matrix, 52

Modified Neuton-Raphson iteration, 601

Moment, Me , 3 75

Mushtari's equations, 444


Natural member reference frame, 92

Negative definite, 58

Negligible transverse shear deformation, 

planar member, 443, 454, 498

Network, topological, 220

Neutral equilibrium, 170, 256, 601

Newton-Raphson iteration, member sys­

tem, 598

Normalization of a vector, 49

Null matrix, 4


One-dimensional deformation measures, 
335, 338, 432


arbitrary member, 491

Orthogonal matrices and trnasformations, 

50, 53

Orthotropic material, 250, 251


Permutation matrix, 42, 135

Permutation of a set of integers, 16, 37

Piecewise linear material, 126, 146

Plane curve, 98, 425

Poisson's ratio, 252

Positive definite matrix, 58, 63

Positive semi-definite matrix, 58

Postmultiplication, matrix, 8

Potential energy function, member system, 

571

Premultiplication, matrix, 8

Primary structure 

member system, 568

planar member, 463

prismatic member, 354

truss, 211


Principle minors, 55

Principle of virtual displacements 

member system, 570

planar member, 442


Principle of virtual forces 
arbitrary member, 490, 492, 512

member system, 571

planar member, 435, 458

prismatic member, 338, 351


Quadratic forms, 57


Quasi-diagonal matrix, 15, 38

Quasi-triangular matrix, 39


Radius of gyration, 434

Rank of a matrix, 27, 42, 43

Rayleigh's quotient, 75, 79

Reissner's principle 

continuum, 270

member, 383, 414

member system, 573


Relative minimum or maximum value of a 
function, relative extrema, 66


Restrained torsion solution, prismatic 
member 

linear geometry, 391

nonlinear geometry, 595


Restrained torsion stress distribution and 
cross-sectional parameters 

channel section, 401

multicell section, 411

symmetrical I section, 398

thin rectangular cell, 407


Rigid body displacement transformation, 
109


Rotation transformation matrix, 101, 232

Row matrix, 4


Self-equilibrating force systems, 160, 211,

258


member systems, 568

Shallow member, assumptions, 448

Shear center, 297, 300, 309, 378, 389

Shear flow, 287

Shear flow distribution for unrestrained 

torsion, 308

Similarity transformation, 53, 62

Simpson's rule, 475

Singular matrix, 22

Skew symmetrical matrix, 11

Small strain, 120, 235

Small-finite rotation approximation, 238

Square matrix, 4

Stability of an equilibrium position, 171,


195

Stability functions (), prismatic member, 

589

Statically equivalent force system, 103, 106

Statically permissible force system, 159,


216, 257

Stationary values of a function, 67, 79

Stiffness matrix 

arbitrary curved member, 516, 520


modification for partial end restraint, 
535


prismatic member, geometrically non­
linear behavior, 588, 595


prismatic member, linear geometry, 522

Strain and complementary energy for pure 

torsion, 280

Strain energy density, 248

Stress and strain component trnasforma­

tions. 249

Stress components 

Eulerian, 242

Kirchhoff, 246


Stress function, torsion, 276

Stress resultants and stress couples, 272

Stress vector, 240

Stress vector transformation, 242

Submatrices (matrix partitioning), 12, 36

Successive substitution, iterative method 

member system, 597

truss, 193


Summary of system equations, force equi­
librium and force displacement, 561


Symmetrical matrix, 11, 35

System stiffness matrix 

member system, 548, 550, 565

truss, 179, 180, 188, 206


Tangent stiffness matrix 
for a bar, 193

prismatic member, 590, 596


Tensor invariants, 232

Torsion solution, rectangle, 281

Torsional constant, J, 276, 278, 323

Torsional warping function, 274, 377

Transverse orthotropic material, 252

Transverse shear deformation 

planar member, 454, 498

prismatic member, 355


Trapezoidal rule, 474

'FTree, network, 220

Triangular matrix, 12

Two-hinged arch solutions, 467, 470


Unit matrix, 10


Variable warping parameter, f, for re­
strained torsion, 372


Vector, definition (mechanics), 4fn 

Work done by a force, definition, 153, 156



