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Thereare ¢ equations relating the member forces and the joint displacements.
Also, there are if equilibrium equations relating the external Jjoint forces and
the member forces. The formulation is consistent, i.e., the number of equations
is equal to the number of unknowns. Ifn r = 1j, the system is said to be statically
determinate since the force unknowns can be determined using only the equi-
librium equations. The difference, My — 1j, is generally called the degree of
static indeterminacy, and represents the order of the final system of equations
for the force method. For the displacement method, the final system of equations
are of order n,. In what follows, we first establish the member force—joint
displacement relations by generalizing the results of Sec. 15-12. Then, we

assemble the joint force-equilibrium equations. Finally, we introduce the joint
displacement restraints,

17-2. MEMBER EQUATIONS

The reduced member equations were developed in Sec. 15-12. For conve-
nience, we summarize the notation and equations below (see (15-100)):

Z = member force matrix (g, x 1)

Fy=EZ + G (ix1)
T = ~F o — Xh T
= = Fh~ TG — I FZ
f" = member flexibility matrix (i x @) (a)

f, = reduced member flexibility matrix (¢, x ¢,) = ETf"E
7™ = member deformation matrix (X i) =y — qpr £y
17, = initial member deformation matrix (i x i) = ¥ 4 f1G

£Z = E"xm — gy )

]

These cquations include the effect of partial end restraint, internal force rcleases,
and reductions due to Symmetry or antisymmetry. We can also use (a) for
complete end restraint by setting E = I, and G = 0,

Now, we introduce new notation which is more convenient. First, we note
that G contains the end forces at B duc to the external member loads acting
on the primary structure defined by Z = 0. Also, —F %o — Xh,G are the
end forces at 4. Then we write

Fho=G

17-3
0= T, - TG =

Y]
LS
I

Next, we note that the equation rclating Z and LA L0 a compatibility
requirement. The term £Z + ETy o,z 1s the relative deformation in the positive
sense of Z due to the member loads and the member redundants, Z, whereas
E™¢™ is the relative deformation in the negative sense of Z due to support

(Joint) movement. The net relative deformation must be zero for continuity.
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Then, we define |
" = reduced member deformation matrix (g, % 1)
r N -
= ETy = BT — X541 174

reduced initial member deformation matrix {g, X 1)
— gy, ,=E(% + 'G)

ation, the member equations take the form

Vv

i

With this not

Fh = T4, + EL .
Fry = Flho— ikl . (17-5)
oA =, + B = BRIy —Xsa ¥ ")
We generalize the relations for member 7 by setting
B=n A=n_
E= F+ Z =17, (17-6)

nl/'m = nlfro, n fr = fr. n

%A = %‘:4.):_ = gr: AI/‘r = AV‘r.n ‘f
ferred to the global frame, we must transiorm

1 joi ities are 1¢
Since the Jolnt & iy ts from the member frame (frame n) to the

the end forces and displgcemen
global frame (frame 0), using
‘ ar = AU ©

570 - %Dn, T}?_‘;'"
The final equations follow.

Member Fbrces-—End Forces

‘—aj;g + = (‘0]’)0"' TE")ZYI + 'U/:;z 4 0_ (17‘_7)

a/'?(i S ”('%0”‘ T'%'rr’lEn)Zn + 37;?:._ .0

Member Forces—Jaint Displacements (g, Equations)
nt/‘r n = A{/ra, . fy, nZ‘n ‘ (17-—'8)

= (EI Uy, — B TRV

i i L -order tensor
The force translation transformation matrix, %, is a second ,

ie., it transforms according to

T = R T r R (a)
where p and g are arbitrary orthogonal frames. Then,
gx-o . ] — @on, ng-n%on (17_9)
n T Mrgn B ne
i that )
and it follows T T B o

y . T
g/r‘z, T%on — ‘%qng{'ﬂn

% See Sec. 10-2.
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Using (17-10), we can express F5_and ¥, , as.
Fi. = Fi_ ., — XYR™E,)L,
Vo = ETRNU, — X0 ")

ny

(17-11)

i

We prefer to work with & since it is a natural property of the member whereas
¢ depends on the selection of the global frame.

17-3. SYSTEM FORCE-DISPLACEMENT RELATIONS

Equation (17-8) represents the g, force-deformation relations for member n.
By defining general flexibility and deformation matrices, we can express the
complete set of gr member force-deformation relations as a single matrix
equation. We let

7. = total member force matrix (g x 1)
= {Zla ZZ?’ L) Zm}

total reduced member deformation matrix (g7 x 1)
= .

a

It

s n//',.’ m}

+”, = total reduccd initial member deformation matrix (g x 1)

= {“//‘ra‘ 1s nt/ro, 2540y /‘lrro, m} (17“12)
f = total reduced member flexibility matrix (gr X g7)
fr, 1

fr, 2

fr, m
Note that f is quasi-diagonal, symmetrical, and positive definite. With this
notation, the ¢, force-deformation relations are given by
V=9, + {7

It remains to generalize the deformation-displacement relations.

We define % as the total joint displacement matrix referred to the global
frame.

(17-13)

(ix1)
= {U, U, ..., %} (17~14)
and express ¥~ as
. : oV = AU (17-15)
The partitioned form is
NN
n’/‘r d LOI a_Q{ . alye
nZh= |2 e SRR (17-16)
o : S _—
Al/hr, m *«Qiml "Oim 2 } ‘f’{m; a;
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Row n of « corresponds to member n. The submatrices in row n are of 0rd§r
x i. Now, we see from (178} that there are only two noN-zero elembents n
g(';w n and they are at columns n., n_. The assembly of o is defined by

T gpon
JZimH = En%

A . = ~EIX TR (17-17)
g T
Mus = 0
SFE Ry, N
N 1, 2, “ e ,j

il = 1,2,...,'"

It is of interest to express .7 in factored form. First, we define the following

matrices: Uy = (U, ... W) (imox D)
U_ = U, U, ..., %}  (im x 1)
F@ol
R = %u.z {im x im)
i ’ Q@om
E,
E = E% (im x qr) (17-18)
E,
Ex i
X = %‘% (im x im)
L L
[ars ]
X = gg’;' (im x im)
L 23]
Using this notation, the expression for #” takes the form
VvV =RB'RU, — EXTRU _ : @

=E'RU, — X TU_)
Next, we relate %, % - to %, using member-joint connectivity matrices for
the positive (C,) and negative (C_) ends:

U = CU (17-19)
Y_ =C_%U
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Note thatrows nof C,, C_ correspond to member n. Thereis only one nonzero
element in a row. For row n, we enter +1; in column n, of C, and column
n_ of C_. Finaily, combining (a) and (17-19), we have

v = (ET®C, — E"2TRC_yu

7
= (B'R)C, — 2°7C_)u (17-20)

and it follows that
A =E"RC, — BT ®C_
= (E'A)C, — x* ')
For an ideal truss, (17-21) reduces to (see Equation 6-28)
o =a(C, — C_) (b)

where a contains the direction cosines for the bars.

(17-21)

17-4. SYSTEM EQUILIBRIUM EQUATIONS

We have used the member force-equilibrium equations in developing the
member force-displacement relations, so it remains only to satisfy equilibrium
of the joints. There are equations for each joint, and a total of ij equations.
The expressions for the end forces in terms of the member forces are given
by (17--7). Assembling the joint force-equilibrium equations involves only
summing at each joint the end forces incident on th¢ joint.

We define 9 as the total external Joint force matrix referred to the globatl
frame:

P = PP, (17-22)
G 1)
and 2, as the initial (Z ~ 0) joint force matrix:
({/’L =P} 1, P}, .. S P7 (17-23)
ijx

The elements of 2, are the joint forces due to external forces acting on the
members with Z = . We express the complete set of equations as

P =P, + BL

Zil |2 [Bu | B | LU B (2

P9 P Byy | By, | - | B Z

—7'2- = ““.I*"Z“ -+ —‘.&L"'ﬁ*“*“};“;—' ““““ *‘}‘*vm.gﬂ -72* (17—24)
. e h7;~~’L‘_i__1L ______ S .

P73 21,5 Bpn  Bp | T @, z,

We assemble 2, and 2, working with successive members. The contribution
of member » follows from (17-7):

in P

F... inrown,
~ . (17-25)
F_ ., inrown.
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560
Column n of B:
B, = R g,
By = —R"TLE, (17-26)
= A",
By, =0
S 7 Ny, N

5:1,2,...,j

Comparing (17-26) with (17~17), we see that

B =" (17-27)
We let B ~ _ .
‘é;_:-'}',a = {’Q];}-w'g/:;%+9~“ag/_7'n‘u} (17‘28)
F =TI Th, T}
Then, we can express & as
P, =CLRF, ,+ CIR' T, (17-29)

17-5. INTRODUCTION OF JOINT DISPLACEMENT RESTRAINTS;
GOVERNING EQUATIONS

The governing equations for the unrestrained system are

P =P +BL=P + AL (17-30)
A=Ay + TL = AU

Now, we suppose r joint displacements are prescribed. We rearrange U 0
that the prescribed displacements are last. We also rearrange 22 and 2;:

U (nax 1)
WU = {»-‘-}

LI2 (rx 1)
_ Pl (rax 1) (17_31)
P - P = {Pz} rx1)

> 'I—’r' 1 (ng x 1)
Zio P ,L) e
where U,, P,, and P, are prescribed. We use B. A to represent the rearranged
forms of 8, o :

(g % na) (g X1}

o - A=[A | A]

Bl _ A{ (g xqt) (17-—32)
B —B= _—B—;v - —AAZT_— (r xqr)
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Finally, we write the equations for the restrained system as

P,=P, +B,Z=P,, +AJZ (ny egs.) {17-33)

P,=P,,+B,Z="P,,+AZ (r egs.) (17-34)

v =fZ + v, =AU + A,U, (qr €qs.)
The unknowns are the g; member forces (Z), the n, displacements (U,), and
the r reactions (P,).

If the restraints are parallel to the directions of the global frame, the trans-
formation of .7 to A (or 4 to B) involve only a permutaticn of the columns of
<7 (rows of 8). The same permutation is applied to the rows of 22;.

Suppose joint ¢ is partially restrained and the restraint directions do not
coincide with the global frame directions. We first transform the force and dis-
placement matrices for joint ¢ from the global frame to the restraint frame, using

U = R TU
75 = A,

This step involves postmultiplying column g of .7 by 2°® T and premultiplying
row g of 2°;, B by Z°%. We write the transformed equations as  ~

(17-35)

(17-36)

P = Pl + BL

V=V, + ML = LU 7-37

where the superscript J indicates that joiut {forces and displacements are referred
to local restraint frames. The final equations are obtained by permuting the
columns of .o77 (rows of 287), the rows of 27, and then partitioning.

The transformaltion of % to U can be expressed as a matrix product,

U = D% = 0ORUu (17-38)
where 2° contains the rotation matrices for the joint restraint frames,
%01
%02
R = N (17-39)
RO

and H is the row permutation matrix. One can generate IT by starting with
I and permuting the rows according to the new listing of the joint displace-
ments, ie., with the prescribed displacements last. Now, D is an orthogonal
matrix,

D! = DT (17-40)
Then, ’
U =D"U (@)
P =Dz



562 GENERAL FORMULATION—LINEAR SYSTEM CHAP. 17

and it follows that

P, = D2,
A = /D7 (17-41)
B=A"T=D% '
The partitioned forms are obtained by partitioning D:
Dl (g X ij)
= = 7-42
D [DZ] rxij ( . )

Finally, we can write
A; = DT = B

- T _ pT
Ay =D =B (17-43)
P L= D2,
P, = D2
To determine the requirement for initial stability, we consider (17-33),
BZ =P, -P, (a)

which represents n, equations in ¢, unknowns. For the cquations to be con-
sistent for an arbitrary loading, the rank of B, must equal n,. Therefore, the
stability requirément for the system is

rBy) = HA) = ny (17-44)

Since By isof order n; x ¢, 2 necessary but not sufficient condition for stability
is

qr > ng =1ij —r (17-45)
Equation (17-44) is the stability requirement for a geometrically linear system.
It is also the initial stability requirement for a geometrically nonlinear system.
In the next chapter, we develop the stability criteria for a geometrically non-
linear system subjected to a finite loading.

17-6. NETWORK FORMULATION

In the formulation presented in the previous articles, we worked with the
actual joint displacements and external joint forces referred to the global frame.
The governing equations are given by (17-30), which we list below for
convenience: '

@ = e@] + -QjTZ (a)
V =AY + L = AU
where
A = ETRNC, — x>"C.) b)
P =CRF, ,+C"RF_,
One assembles s, 2}, using (17-17), (17-25), which are actually the expansions
of (b). By introducing new joint variables, we can express o7 in terms of only one
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conqectivity matrix, C, — C_ = C. The rule (17-17) for assembling &7 still
applies except that now .«7,, = L -
Let Y denote some arbitrary point. Suppose we express the actual force and

displacement matrices for joint k in terms of their equivalents at point Y.
We define .

Py, = statically equivalent force at ¥ due to Py, the
actual force matrix at joint k.
%, = displacement at ¥ duec to rigid body motion about (17-49)
joint k.
The actual and equivalent quantities are related by
Py = Xy Py
wuy = Iy, 47=47
where '
o 1 O
A kY XZY l[)
0 1__(xo__\<0) (o___o
____________ L TV — Xys) X2 — Xya) out-of-
I “d =gy | plane (1779
—(Xk2 — X3,) P — x9y) { 0
1
planar

We could operate on (b), but it is more convenient to start with (17-11):

Von = ETRNU . — X0 TU_) (©)
Now, by deﬁnition,
o Xy =X .. ‘ @
Substituting for Y, using (17~47), and noting that
T A =
we obtain ' - ©
Von = ESRTSNUS . — U5, ) (17-48)
The remaining steps are the same as followed previously. We let
Uy = {US |, U, ..., U . -
and er'te Y { Y, 1 Y,2 Y.)} (17 49)
V= o Uy (17-50)
The generation of .7y follows from (17-48). For now #,
| Ay, = —ly, . = CIRIT (17-51)
&I}’, ns =0 ((In x 1)
SH#F N n_
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To express oy in factored form, we let
Eix

o __ 0
Z% = Aoy

(im x im) (17-52)

0
A m,Y

Then, :
dy = ETRX%T(C, — C.)
= E"R%%7C
We transform the joint forces, using (17-47), and write the resulting equations
as

(17-53)

g)y = @y, + &y;l/‘Z (17_54)
V=t + (L= o Uy

To relate corresponding terms in (a) and (17-54), we generalize (17-47):

Py = AP (17-55)
U = X5 Uy
Xy
Sy = X3y, (i < )
a0,
It follows that ly = AT (17-56

— ago_gp.
Py = X?r

The expression for 7y reduces to (17-53) when (d) and (e} are introduced.

The formulation developed above can be interpreted as a network formula-
tion since the connectivity term appears seperately in the factored form of 7.
A simplified version which does not allow for member force relcases has been
presented by Fenves and Branin (see Ref. 1). The only operational advantage
of not working with the actual joint quantities is in the generation of .7, and
&/, . This advantage is trivial compared to the additional operations required
to generate Py, Py, to introduce the displacement restraints, and finally, to
transform %y to % once the solution is obtained. Another serious disadvantage
is that the equations tend to become ill-conditioned.

Fenves and Branin’s primary objective was to show that the governing
equations for a member system can be cast in a form such that geometrical and
topological effects are separated, i.c., a network formulation. DiMaggio and
Spillars (Ref. 2) have also presented a network formulation for a rigid jointed
member system. Actually their formulation is a special case of our first formula-
tion. It is not, strictly speaking, a true network formulation since connectivity
is not completely separated from geometry (see (17-21)). The only way that one
can separate connectivity from geometry is to redefine the joint variables. Note
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that the ideal truss is an exception. Connectivity and geometry are naturally
uncoupled for this system.

Whether one interprets the governing equations for a member system from a
network viewpoint is of academic interest only. In the displacement method,
the equations reduce to the equations for the direct stiffness method. The
only possible advantage of the network interpretation is in the force method.
There one can use certain concepts of the mesh methodt to select a primary
structure, provided that there are no member force releases or partial joint
restraints. However, the selection of a primary structure for a rigid-jointed
frame having fixed supports is quite simple, and even this advantage is debatable.

17-7. DISPLACEMENT METHOD

The governing equations are given by (17-33), (17-34), and (17-35). Once
the member forces are known, we can find the reactions from (17-34). Now,
we start by solving (17-35) for Z in terms of the displacements,

Z =7, + kAU, + kA0,

where (17-57)
7., = initial member force matrix (g¢ x 1)
= —k?", = {=Kk. F 00 s} (17-58)
k = f~! = rcduced member stiffness matrix (g7 x q¢)
f; { k!'. 1
- fr_,é _ k} 2
A ke

Notc that k is quasi-diagonal, symmetrical, and positive definite. The matrix,
7., contains the initial member forces duc to external loads acting on the
members and initial deformation resulting from fabrication errors or tempera-
ture changes.

We substitute for Z in (17-33) and write the result as

P, =P, + K, U, +K,,U, (17-59)
where
K., = ATkA, (ng x ny)
K12 = Akaz (”d X 7') (17—60)

I—)o, 1 = I_)I,l + A"]FZ] (n,, X 1)
The elements of P, ; are the joint forces due to the initial end forces. Since
A, is of rank n, (when the system is stable) and k is positive definite, it follows}

T See Sec. 9-5.
1 See Prob. 2-18.
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that K, is positive definite. Conversely, if K,, is not positive definite, the system
is unstable. The joint displacements are determined by solving (17-59) and the
member forces are obtained by back substitution in (17-57).

Operating on the restrained equations, as we have done above, is not efficient
since the various coeflicient matrices must be generated by matrix multiplica-
tion. By first manipulating the unrestrained equations and then introducing
the displacement restraints, one can avoid any matrix multiplication. This
procedure corresponds to the direct stiffness method.

Operating on (17-30), we obtain

Z =17, + kU o (17-61)
and
— T T 7
P =P+ ALy + ARSAU (17-62)
=P, + KU

Equation (17-62) is identical to (16—8). The generation of 2,, 4" reduces to
(16-9), (16~10) when we introducc the factored forms of 22, o7, Z,.

First, we review the definitions of the member stiffness matrices, k3, ,,,
ki, ., ki_... The effective member stiffness matrix (sce (16—-104)) has been

defined as

k!, = Ek, ,ET (a)
Transforming k to the global frame and applying (16~ 107) leads to
' kg w = %(Jr:, Tkg n@on(
- ¢ (b)

= (Ef Rk, E] R
and

k::uu = kg n
ko — **1(0 agro, T
nen_ e, nA n ] c
ki, =k AT ©
Now, substituting for .o/ using (17-21), the expression for A~ takes the form
A = (Ch — CTak(C, — &>7C_) (d)
where
k! = (ETR)'K(E"R) (17-63)
Finally, we expand (d):
H = CLKC, + CU(—ka: NC- (17-64)
+ CT(=KZIHCy + CHI K2 T)C.
One can easily show that (17-64) reduces to (16—10) when the properties of

C., C_ are taken into account.
The initial end actions for member n aret

g}&z.(.,i = @on, Tﬁz“o + (%on, TEH)(—kr, ua//"ro, n)
- T o ) .
T = RITN L — R TR~k )

T See Egs. (17-7), (17-8), and (17-11).

(e)
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Using the factored forms for Py,

oo <, and Z,, the expression for P, takes the

Py =ClRF, , + CTR"F_ R
+ (CL — CLa)RTE(—kv") (17-63)
The general form of 2, defined according to (16-9) is |
P, =CLF% | + Ctlz , (17-66)

Substituting (e) in (17-65) results in (17-66).
In §ec‘ 16-4, we presented a procedure for introducing joint displacement
restraints and represented the modified equations as

KU = P (ieqgs.) ()

Now, ([} consists of (17-59) plus r relations for the prescri ,
btai . ) e scribed displ )
We obtain (f) by starting with p Splacements

}.(_1.‘_.,;_‘11 }ZL - P, - P, - KU,
R 4 1T Sl R A ®

and permuting the rows and columns. This operation can be represented in
terms of the permutation matrix, IT, defined by

U = 11’
P — TP ()
Then,
K,i 0

* L BnbetS S
A 11 [O 45 ']II ‘
gy =it [P = P~ KUy Y

U,

It follows that J* is positive definitec when K1 is positive definite, i.e., when
the system is stable. T

17-8. FORCE METHOD

We start with the governing equations for the restrained systeni:

. BJ_Z =P, - P, , {(ns eqgs.) (a)‘
BiU, +BiU, =" =4, + 12 (greqs) (b)
P, =P, , + B,Z (r egs.) (c)

quation (a) represents n,; equations in qr unknowns where g > n, Also
B, is of rank n; The system is statically dcterminate when g, = n,. We let
qr be the degree of static indeterminacy, ic., the number of member force
redundants:

Gr = qr — 1y (17-67)
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Since By is of rank n,, we can solve (a) for n, member forces in terms of the net
prescribed joint forces (P, — P; {) and » member forces. The compatibility
equations for the member force redundants are obtained by eliminating U,
from (b). This is possible since (b) represents g, equations whereas U, is only
of order ny x 1. In the next section, we specialize the principle of virtual forces
for 2 member system and utilize it to establish the compatibility equations.

We suppose the first i, columns of B; are linearly independent. If the system
is initially stable, the member force matrix Z can always be rearranged so that
this condition is satisfied. We partition Z after row ny:

Z (nd x ij)
7 = ! (17-68)
(g7 % 1) LR (qr x 1)
The elements of Zy are the force redundants for the system. We refer to the

system obtained by setting Zz = 0 as the primary system. Continuing, we
partition B; and B, consistent with (17-68):

(na % qr) (ma % nd) (na  gr)

B, =|Bw } Bix ] (17-69)
B, = [ B,p } By ]
(r X qg) (r X ng) (r xqRr)

The equilibrium equations take the form

B pZp = l—)1 - Pz, Bmzx (17-70)
P, =P; 5, + BypZp + ByrZy (17-71)
We write the solution of (17~70) as
Zp =Zp o + Zp gy (17-72)
The force influence matrices can be expressed as
('2: t;) = (B,;p) (P, - P o)
o a0 ’ (17-73)

Zpx = —(Bp) "Bz

but it is not necessary to determine (B;p)~*. Actually, the solution procedure
can be completely automated.t The complete solution for 7. is

(gr X qRr)

- Z_P,o ZI’,R v _
i

Note that the member forces due to Zj are self-equilibrating, i.e., they satisfy
B,Z = 0. Finally, we substitute for Z, in the expression for P, and write the

result as
P, =P, , + P, zZs - (17-75)

T See Sec. 9-2.
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where

(rxt)

Pyo=Pr, +ByZ,

Prr =By + BipZyp x
r X qR)

(17-76)

It remains to determine Zj. :

Equation (b) represents ¢, equations in n, unknowns, U,. Since g; = n, +
qr, there are g excess equations. We partition (b) consistent with the partioning
of Z,

BT Bl | ot e |
[_E;f{j U, + E?’J U, = {“;TXP' =3 okl _f_fT’!’_,L‘f”i‘_ Zr ©
iR Bix ¥ r Yo R for | fre | (Zr
and obtain the following two sets of equations relating to U, and Zj:

Bi,U, + ngpz =Vp ="V op + tpplp + oy (n eqs) (17-77)
BI:U; + B0, = v = Vo r + TirZp + fogZy (qg €gs.) (d)
Thp J:oint displacements can be determined from (17-77) once Zy is known.
Eliminating U, from (d) leads to
Pl RU; = #7¢ + Zi g p '
= Vo r + irZp + fply + ZF o(F ) p + tppZp + fprZr)
Equation (17-78) represents the compatibility equations for the force redun-

dants. Finally, we substitute for Z, using (17-72) and write the resulting
equations as

(17-78)

7. 2r = A ' (17-79)
where
(fu;_an) i r r
7 = 1iRRr -+ Z 5 f Z A -+ Z f + ZT f T
(qRJ:” P, RAppLip R P, R*PR ( ‘P, R I’R) (17—80)

=Py RU; — (Vo + fhxp, o) — Zi (¥, p + fopZp,,)

These equations are similar in form to the corresponding equations for the
ideal truss developed in Scc, 9--2.
The flexibility matrix, f;,, can be expressed as

i, - [%fi]r [_;_};r_J” fzz&] [__Z_?Ji]
e d e | fee U (17-81
[ Zaa] ([ ek v
IQR IQR

Now, f is positive definite for a deformable system. Then, it follows that f,
is also positive definite. In a later article, we consider the case where certa.ig
member deformations may be prescribed.

Once the preliminary force analyses have been carried out, the remaining
steps are straightforward. We generate f7. A, solve for Zy, and then determine
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Zp, P, by back substitution. If the displacements are also desired, they can be
determined by solving (17-77).

The final number of equations for the force method is usually smaller than
for the displacement method (gg vs. ). However, the force method requires
considerably more operations to generate the equations. The force method
can be completely automated, but not as conveniently as the direct stiffness
method. Also, automating the preliminary force analyses requires solving an
additional set of ny equations. Another disadvantage of the force method is
that the compatibility equations tend to be ill-conditioned unless one is careful
in selecting force redundants.

17-9. VARIATIONAL PRINCIPLES

In Chapter 7, we developed variational principles for the displacement and
force formulations for an ideal truss. Now. in this section, we develop the
corresponding variational principles for a member system. The extension 1S
quite straightforward since the governing equations are almost identical in

form.
We start with the force-equilibrium equations,}

, P=P +A"Z (a)

The partitioned form is B 3
P, =P, +AlZ (b)
P, =P, , + AJZ (c)

To interpret (a) as a stationary requirement, we consider the deformation-
displacement relation,

alf = AU = AlUl + A2U2 ° (d)
The first differential of " due to an increment in U is

dv" = AAU = A; AU, + 4, AU, (17-82)

Then, the requirement that

PTAU = PT AU + Z" dv (17-83)
be satisfied for arbitrary AU is equivalent to (a). If we consider U, to be pre-

scribed, (17-83) results in only (b). We refer to (17-83) as the principle of virtual

displacements for a member system.
In the displacement method, we substitute for Z in the joint force-equilibrium

equations, using
Z=k( —7)= (AU - +7) (e
The form of (17-83) suggests that we define a scalar quantity, V = V(U),

having the property
av = Z7dv" = dVv(U) {17-84)

t We work with the governing equations for the restrained system. See (17-33), (17-34),(17-35).
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Qne can interpret V as the strain energy function for the members. For the
linear case, V' can be expressed as :

V=3t =¥ )k —1,)
= AU — ¥°,)'k(AU — 1",
Continuing, we define the potential energy function, I1,, as
I, =V + PJU - PTU (17-86)

The Euler equation.s for TI, are the unpartitioned joint force-equilibrium
equations expre‘ss‘ed in terms of U. Finally, we introduce the joint displacement
constraint condition, U, =U,, by writing (17-86) as

0,=V+P, U +P,U, - PTU, — PI(U, - T,) (17-87)

whuc U,, U;, and P, are variables. The Euler cquations for (17-87) are the
pgrtltloned equilibrium equations (Equations (b), (c)) expressed in terms of the
dxsplacements with U, sct equal to U,, ie., they are the governing equations
for the displacement formulation presented in Sec. 17-7.

If only the cquations for P, are desired, we sct U, = U, in (17-87),

I, =V + P/, U, - Py, (17-88)

(17-85)

where A
V'=3AU; + AT, = 7)) kAU, + A0, —¥,)  (17-89)

;l“he Euler equation for (17-88) is (17-59), and the second differential has the
orm

dZIIp = AU{(ATkA )AU,
= A[J{Kll AUI

SingﬁbK}i is positive definite, we can state that the displacements defining the
equilibrium position correspond to a minimum value of IT. d -
e - » defined by (17-88) A

Wq cqnsidgr next the force-method formulation. Welet AP, AZ bea statically
permissible virtual-force system. By definition,

AP = AT AZ = BAZ (17-91)

Premt‘lltiplying both sides of (d) with AZ” and introducing (17-91) leads to
the principle of virtual forces,

APTU = AZTy (17-92)

Note that ( 1.7 —92) is valid only for a statically permissible virtual-force system
1.e., one which satisfies (17-91). ’
The compatibility equations follow directly from the principle of virtual

forges by requiring the virtual-force system to be self-equilibrating. If AZ
satisfies :

(17-90)

then (17--92) reduces to AP, = B, AZ =0 (17-93)

AP7U, = AZ™Y (17-94)
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This result is valid for an arbitrary self-equilibrating virtual—forcg system. The
formulation presented in the previous section corresponds to taking

z
AL = [’iw‘] AZr (17-95)
APz = PZ.R AZR

We define the member complementary energy function, V* = V*(Z), such
that

Av* = AZT(Z) (17-96)
For the linear case, R )
and v* =122 + 277, (797

We also define the total complementary energy function, I1,, as
I, = V* — P10, = U7, P,) (17-98)

The deformation compatibility equations, (17-94), can be inte.rpreted as the.
stationary requirement for I, subject to the following constraints on Z, P,

B,Z =P, — P, @)
P2 = PI,Z + BZZ

The constraint conditions are the joint force-equilibrium equations. Opcratmg
on (g), and noting that Py, Py, P, , are prescribed, lead to the constraint

conditions on the force variations

B, AZ =20 o (b)
AP 2 = B)_ AL
Note that (h) require the virtual-force system to be statically permissible and

self-equilibrating. )
In the previous section, we expressed Z, P, as -

Zp Zp R
= JEe ILERAT 7 .
2= [ [ 0
P, =P, ,+ P xlg

This representation satisfies (g) and (h) identicaﬂy for arbit:ary AZR.‘ Sub-
stituting for Z, P, in (17-98) and expanding V* using (17-97), we obtain

~ Zp, L Z?:.*_(_
0, = Z[ZF r | Tee) ["’ o F f{‘o"“} +af [i; ]Z"] (17-99)

~ZFPT gU, + const

The Euler equations for (17-99) are (17-79), and the second differential has the

orm PT1, = AZL, AZyg (17-100)
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Since fg, is positive definite, it follows that the true forces, ie., the forces that
satisfy compatibility as well as equilibrium, correspond to a minimum value
of T1..

Instead of developing separate principles for the displacements and force
redundants, we could have started with a general variational principle whose
Euler equations are the complete set of governing equations. One can easily
show that the stationary requirement for

I, = Z'BTU, + BIU,) — v* - PTU,

+ P7 U, + P7,U, - PI(U, — U))
considering Z, U,, U,, and P, as variables, lead to the partitioned joint
force-equilibrium equations and the member force-joint displacement relations.
This principle is a specialized form of Reissner’s principle.

We obtain (17-87) from (17-101) by introducing the force-displacement
relations as a constraint condition on Z,,

7 = k(BTU, + BIU, — *,)

(17-101)

= k(" — 1) (3)
and noting that, by definition,
Z'BiU; + BiU,) — V* =V (k)

Introducing the joint force-equilibrium equations as constraint conditions
reduces I to —II, as defined by (17-98).

17-10. INTRODUCTION OF MEMBER DEFORMATION CONSTRAINTS

Suppose a member is assumed to be either completely or partially restrained
with respect to deformation due to force. The rigidity assumption is introduced
by setting the corresponding deformation parameters equal to zero in the local
flexibility matrix, g. For example, if axial extension is to be neglected, we set
1/AE = 0. For complete rigidity, we set g = 0, Now, in what follows, we
discuss the case where neglecting member deformation parameters causes the
member flexibility matrix f, to be singular. This happens, for example, when
axial extension is neglected for a straight member. The rank is decreasedt by
1 and the axial force-deformation relation degenerates to

L
no__.n no_ on —n
Uy = Upy — Ugy = U5y + ik Fpo =7, (@

where T, ; is the initial axial deformation due to temperature and fabrication .
error. Note that now the axial force has to be determined from the equilibrium
equations. For complete rigidity, f, = 0, and the force-displacement relations
(see (17-5)) degenerate to ’

V, =1, = BTy — Bras T (b)
1 See (16-75).
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One can interpret (a), (b) as either member deformation constraints or as con-
straint conditions on the joint displacements. In general, the decrease in rank
of the system flexibility matrix f is equal to the number of constraint conditions.

We consider first the force method. The governing equations are given by

f,7r = A (4r €qs.) (©)

_|Zrr] ([ Zex.
fz, I, L. (d)

Suppose these are ¢ deformation constraints. Then, f is of rank ¢y — ¢. In
order to solve (c), f;, must be nonsingular, ie., it must be of rank ¢g. This
requires

where

gr — ¢ (g (17-102)

That is, there must be at least g unconstrained member deformations. This
condition is necessary but not sufficient as we will illustrate below. Aside from
insuring that the flexibility matrix is of rank gp, there is no difliculty involved in
introducing member deformation constraints in the force formulation.

Example 171
Consider the ideal truss shown. For this systcm,

gr =4
qr =2

We take the forces in bars 3, 4 as the redundants:

7~F1 Z~F3
“r =\ F, R TAF,

Then,
10
Zen =14 4
and ~
A 10
f_ox 1 0 1
T4 00 1 10
0 1] fudlo 1

We can specify that, at most, two bars are rigid. No difficulty is encountered if only one
bar is rigid. However, we cannot specify that bars 1, 3 or 2, 4 are rigid.

We consider next the displacement formulation. Since f is singular, k does
not exist and, therefore, we cannot invert the complete set of force-displacement
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: ) Fig. E17-1
3;? )

rclaﬂong ie., (17—.57) are not applicable. In what follows, we first develop th

appropriate equations by manipulating the original set of ;governin e uatIi) ;

We then show how the equations can be deduced from the variatiorﬁg Jq nciple

for displacements. * principle
The governing equations are

Pl = PI, 1+ ATZ (”d C(]S‘) (a)
“f = "//‘0 -+ fZ = AIUI + AZUZ ((11” CqS.) (b)

Now, We suppose there are ¢ deformation constraint
are 1A1§ted such that the last ¢ elements
partition ¥ and Z as follows:

. A" (qr—c)x1 Ly :
o=}l Z,
{'V}} (ex 1) Z= {Z} (17-103)

. deformations and Z, tt
wher . ‘ nd Z, the corre-
ponding member forces. We use subscripts ¢, u to indicate quar;tities asso-

Cxated Wlﬂl the C()l’lStlained and unconsti al]led de‘()lllld“( ms. ( ()II“]H[ Ilg we
d S . .

' o . - 1 >
pclI tltlon /\1, AZ’ 1/05 and f COnSIStCnt With (1 ; _'103).

Al - i\_lfi Gr—c)xny
@r X ng) Alc (cxng)
A, = [‘_‘zz_‘ for=axr
(g1 xr) A2c_ (cxr) (17_104)

oy v, ) @r-oxt
o = ;v;L_
(grx1) [c,o (ex 1)

@qr xqr)

s and the elements of v~
are the prescribed deformations. We
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The deformation constraints are introduced by sg:tting f, = 0: /Notz t;at,' in
order for f to be singular, there must be no couphpg between ¥ wand Z, ie,
f must have the form shown above. Using this notation, the governing equations

take the form

P, =P, , +ALZ, + AT Z. ~ (17-105)
Vu = Wu,o + fuZu = AluUl + AZuUZ (17-106)
Vo=V, = AU + AsD, (17-107)

Equation (17-107) represents ¢ constraint conditions on the unknown Jcc;mt
displacements, U,. The rank of Ay, is equal to the n}lmbe:r (:if 1ndepertl qnt
1 ati ily demonstrate that ¢ independent constrain
constraint equations. One can easily ‘ :
conditions are required in order to be able to analyze the system for an arbitrary

loading.

Example 17-2
Suppose we specify that bars 1, 3 arc rigid for the system considered in Example 17-1.
The constraint equations arc (we take ¥", = {e;, ¢3})

€ =€y, = Uy — Uy ()
ey =03, = —Up + Ty

For (a) to be consistent, we must have

(b)

€0t €3, = —ly + Uy

Even if (b) is saﬁsﬁed, we cannot find the forces in bars 1, 3 due to p, ;.

In what follows, we assume A, is of rank c. We solvg (17»106)hfor?1,;l;2d
substitute in (17~105). This is permissible since f, is nonsingular. The res g

equations are
Z, = ku(ﬁf/‘u -V, o) _ (17-108)

= kuAluUl + ku(AZuUZ - "//‘u‘ o)
d "o — n . _
. (A{ kuAlu)Ul + ATCZC = Pl - I’I,l - Alluku(AZttUZ - //u, o) (17 109)
u AU =7, — A0, (17-110)
Now, the coefficient matrix, AT k,A ., is nonsingular only when the structure

obtained by deleting the restraint forces (Z.,) is stab.le. By sxl'itgbly rede‘ﬁnuzf
Z., we can transform (17~109) such that the coefficient matrix is always no

singular. Suppose we write
Zc = —‘c/: + ké(‘//‘c - ,Vc, o) B
=1Z; + k::(AlcUl + AUy — ¥ c, o)

3 i o1 rbitrary symmetrical
where Z. represents the new force vartable and ki is an a y 8y

(17-111)
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positive definite matrix of order c. Substituting for Z, in (17-109), we obtain
P, = P, + ALz .

Tk, ! A, | A U b8 (@)
T T2 1 ] LU Bl B At S D RAET
AL A“[ rd([fxu MJH {«,fw})

By definin
’ ’ k, | .1 T

and noting (17-104), we can write (a) as

Pr=Pri+ AIKAD: - 7)) + ATKAOU, 1+ ATZ2 ()
Using the notation introduction in Sec. 17-7 (see (17-60)), we let
K., = ATKA,
Z, = kv, (17-113)
P, = P, +Afz,
Finally, the governing equations take the form
Z, 0 . ‘
= (== == ! [/ e _
Z {Z(} {7C} +k( 77,) (17-114)
KUy + Al 7, = P, -P,, ~ K,U, = H, (17-115)
AICUI = 7’/‘('0 - AZCUZ = Hz (17“"116)

Since A must be of rank 1y for stability and we have required ki to be positive
definite, it follows that K, is positive definite. Also, the solution for U; must
satisfy (17-116) and we sec from (17-111) that 7/ is equal to Z,, the actual
constraint force matrix, for arbitrary k’. .

The expressions for 7, and P,, with Z. deleted, have the same form as the
unconstrained expressions (17-57) and (17--59). Now, it is not necessary to
rearrange Z such that the constraint forces are last. One can work with the
natural member force listing,

zZ={z,...,7,) @

and take arbitrary values for the member deformation parameters that are to be
negelected. We obtain K, and H; by first generating J¢™*, ¥ using the
direct stiffness method and then deleting the rows and columns corresponding
to the prescribed displacements. The constrained deformations, #°,, can be
listed arbitrarily. Tt is only necessary to specify the locations of the constraint
forces (elements of Z;) in. the natural member force listing. Once the displace-
ments and constraint forces are known, we can determine the force matrix for
member n by first evaluating (see (17-8) and (17-11))

Zn = k; n(n//‘r,n -7,

ro. ")
' 9 17-117
Vn = ELR™) U2, — 23 ) (17=117)
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where k;_ , is the modified stiffness matrix, and then adding the constraint forces
in the appropriate locations. In what follows, we describe two procedures for
solving (17-115) and (17-116).

In the first method, we solve (17-115) for U,

U, = K{'H; — K{'A[LZ; (17-118)
and then substitute in (17~116),
(A K 'AT)Z; = A K{{H — H, (17-119)

The coeflicient matrix for Z; is positive definite since K, is positive definite
and A, is of rank ¢. Note that, with this procedure, we must invert an nyth
order matrix and also solve a set of ¢ equations. For the unconstrained case,

we have to solve only n, equations.

Example 17-3
We suppose bar 2 (Fig. E17-3) is rigid. The constraint cquation is
€y = Uy = €9 (a)

To simplify the example, we consider only the effect of joint forces. Using the notation
introduced above, the various matrices for this example are

Uy = {uy, uy}

Pl = {Phpz}
.'I/‘u =€ Zu = 1:1 ku = kl (b)
AV, =e, To=F, ki =k
qr =2 ng =2 c=1
(P, 1, U,, ", are null matrices.)
- Fig. E17-3

Ireresmensali 14 ) §

@
@ Bar @ is rigid

We start by assembling A,

SEC. 17-10. MEMBER DEFORMATION CONSTRAINTS
and then partition according to (17-104):
1 .
A = TR =
' [\/j \/ZJ
Alc = [O 1]

Note that we cannot invert (17-109), since AT kA, is singular.
Now, we assume an arbitrary value for the stifiness of bar 2,

P
/\2 = (1/(.1

where a is an arbitrary positive constant, and assemble K, :

The governing equations (17-1 14), (17~115), and (17--116) reduce to

- fon [z

KU, + ALF, = P,
AU, =0

The solution follows from (17-1 18), (17-119). We just have to take
Hi=P H,=0 7y = F)

K":»-L L+2a —1
Yk, | -1 +1

1
AKIE = =] 1
tehu ak, (-1 1]

The inverse of K, is

Then,

{

Ach;llA{c =
ak,
and (17-119) reduces to
1 P 1
ak, 2 = m(!’z =P
Fy=p, — p
Substituting for F in (17~118), we obtain
L
k(
u; =0

Finally, we substitute for F, uy, uy in (h):

F1=\/§b1

F2=F§=172*P1

579

)

)

(h)
(1)
)

(k)

O]

(m)

(n)

(©)

(p
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Instead of first solving (17-115) for U, in terms of Z,, one can start with
(17-116),
AU =9, - A0, =H, (a)

which represents ¢ relations between the n, displacements. Since A, is of rank
¢, we can express ¢ displacements in terms of n;, — ¢ displacements, i.c., there
are only n; — ¢ independent displacements.

We suppose the first ¢ columns of A, are linearly independent. Since A,
is of rank ¢, we can always permute the columns such that this 1equ1remcnt is
satisfied. We let

n=ny —c (17-120)

and partition A,,, Uy:

U (ex 1)
Ul - -
U (nx1)

(exna) (ex0) texn) (17-121)
Ay - [Alc 1 , Ay z]

The elements of U are the independent displacements. By definition, A1 18
nonsingular. Then, solving (a) for U,, the constrained displacements, we have

Uc = A1c. 1H2 - Alc‘ 1A1c.2U (17'122)

Finally, we express U, as

. U; = BU + H; (17-123)
where
"5~ [ Al éy.z_} (exn
[n (nXxn)
H. = A H | @ =129
e 0 (nx 1)
Note that B is of rank » and
(c > n)
AB= 0 (17-125)

The generation of B, Hj; from A,,, H, can be completely automated using the
same procedure as employed in the force method to select the primary structure.
We consider next the joint force-cquilibrium equations, (17-115),

KUy +ALZ:=H;  (1¢qs) (a)
Substituting for U leads to
(K:BU + AT.Z. = H, — K,;H,; = H, (b)

We eliminate Z; from (b) by premultiplying by BT and noting (17-125). The
resulting system of n equations for U is

(B"K,BU = BTH,  (negs) (17-126)

Since B is of rank n, the coefficient matrix is positive definite. One can interpret
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BTK,,B as the reduced system stiffness matrix. We solve for U and then
evaluate U, from (17-123). It remains to determine the restraint forces, Z..
We consider again Eq. (a). Assuming U, is known, we can write

ATZ, =H, - K,,U, =H, (n,¢qs) (17-127)

The matrix, Hs, is the difference between the external applied force, P,, and the
joint force due to member force with the constraint forces deleted, i.e.,

H5=P1—P1,1—ATZ (©
where (sce (17-114))
Z =K — 1)

_ d
~ KA, + AT, - 7 @

We determine Z, using the member force-displacement relations and assemble
P, ; + A]Z by the direct stiffness method. Now AT, has ¢ independent rows.
In determining B, we permuted the columns of A such that the first ¢ columns
arc lincarly independent. We apply the same permutation to (17-127) and
partition after row ¢:

(17-128)

Considering the first ¢ equations, we have
Al Z; = Hs (17-129)

Since A,,.  is nonsingular, we can solve (17-129) for Z.. We obtain the final
member forces by adding the clements of Z; in the appropriate locations of
Z defined by (17-114) and (d).

In this approach, we have to invert a matrix of order ¢ and solve a system
of ny — ¢ equations. Although the final number of equations is less than in the
first approach, there is more preliminary computation (gencration of B) and
the procedure cannot be automated as easily.

Example 17-4
For this example (Fig. E17-4),

ng =5 c=4 n=1 (a)
The constraint conditions are
€y Upy — Ugz €10
€ Upy — Uy 2% PN :
yo=4 b= = =V, (b)
€3 Uyy — Uz €3.0
€y U3y — Ugq €40
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Note that (b) corresponds to (17-107). The form corresponding to (17-116) is

u _
+1 " ot Tz
LO¥:
1 +1 €20 (c)
Uy p = _
+1 €3, + Us;
Uy -
+1 24,0+ Uy
U3y
1 ! !
AL U, H,

Columns 2, 4, 5, and either 1 or 3 comprise a linearly independent set. Then, we can tqke
either uy, oru,, as U. Itis convenient to take U = u,,. We permute the columns according

to 1 -5

2-1
32 ‘ (d)
43
) 5—-4
The rearranged form of U; is
Uy = {uy3, tyy, tptiz b oug} ©
= {Uc | U}
We determine U, by applying (17-122). This step is simplc for this example sincfe A 1= L
Finally, we assemble U, defined by (¢) and then permute the rows to obtain the initial

Fig. E17-4
: ©,

e Ol 9 e |©

BT o b

Bars 1, 2, 3, 4 are rigid

listing of Uy. The final resuit is

ugy +1 0

Uss 0 €10+ Taz

Uy po= | +1 {ug} + e, €
Uy, 0 ey, + Uz,

Usq 0 a0 T Tay

T
B H;
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The constraint forces are determined from (17-127), which for this example has the form

F 5,2
— ] +1 F,Z =< Hs ;3 (&
+1 ol |Hsa
+14 " H s
7 )
A{c Zé HS

We permute the rows of (8) according to (d) and consider only the first four equations.
The resulting equations correspond to (17-129). :

It is of interest to derive the cquations for the constrained case by suitably
specializing the variational principle for displacements. We start with the
unconstrained form of I1, developed in Sec. 17-9,

Hp:V+P}rJUl“p1TU1 (a)
where
V=30~ 1)K — 1) (0)
V= A1U1 + Azrjz
Now, the displacements are constrained by A
1/‘c = AlcUl + AZCUZ = nl/c.o (C)
Then, V reduces to
V = %(a//‘u - Al/lll, O)Tku(ipﬂll - 61/.’!1, 0) (d)
A’I’Au = AluUl + AZuUZ ' i ’
We obtain the appropriate form of I, by substituting for V using (d) and
introducing the constraint condition, ¥°, — ¥, | = 0 ’

0, =V + Pl ,U - PTU, + (4", — v, ) (17-130)

The elements of Z, are Lagrange multipliers. One can easily show that the
stationary requirement for (17-130) considering U, and Z, as independent
variables leads to (17-109) and (17-110).

Since #7, = ¢, ,, we can add the term

%(Vc - nl/‘c, o)Tké(Vc - a//‘c, o) (e) .
to(d). Taking
V=0 K - ) (17-131)
in (17-130) leads to (17-115) and (17-116).
In the second approach, we substitute

U, = BU + H, (®)
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in (a) and (17-131): ~ ~ ’
o,=V + (P7, — P)BU + H,)
V=i — )R — V) (17-132)
"V~ = A]BU + A1H3 -+ Azﬁz
The variation of IT, considering U as the independent variable is
dii, = AUT[B'(P;,, — P, + (BTA{K'AB)U
+ B'ATK(AH; + AU, — 77)] (®
= AUT[(B"K,,B)U — BTH,]
Requiring IT,, to be stationary for arbitrary AU results in (17-126). Note that

we could have used the reduced form for V, ie, equation (d). Also, we still
have to determine the constraint forces.

i
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Analysis of
Geometrically
Nonlinear Systems

18—-1. INTRODUCTION

In this chapter, we extend the displacement formulation to include geometric
nonlinearity. The derivation is restricted to small rotation, i.c., where squares
of rotations are negligible with respect to unity. We also consider the material
to be lincarly elastic and the member to be prismatic.

The first phase involves developing appropriate member force-displacement
relations by integrating the governing equations derived in Sec. 13-9. We treat
first planar deformation, since the equations for this case are easily integrated
and it reveals the esscntial nonlinear effects. The three-dimensional problem
is more formidable and one has to introduce numerous approximations in order
to generate an explicit solution. We will briefly sketch out the solution strategy
and then present a linearized solution applicable for doubly symmetric cross-
sections. i

The direct stiffness method is employed to assemble the system equations.
This phase is essentially the same as for the linear case. However, the governing
equations are pow nonlinear.

Next, we described two iterative procedures for solving a set of nonlinear
algebraic equations, successive substitution and Newton-Raphson iteration.
These methods are applied to the system equations and the appropriate re-
currence relations are developed. Finally, we utilize the classical stability
criterion to investigate the stability of an equilibrium position.

18-2. MEMBER EQUATIONS—PLANAR DEFORMATION

Figure 18-1 shows the initial and deformed positions of the member. The
centroidal axis initially coincides with the X, direction and X, is an axis of
symmetry for the cross section. We work with displacements (uy, u,;, ®3),

585



