16
Direct Stiffness Method
—Linear System

16—-1. INTRODUCTION

We consider a system comprised of m members which are connected at j
joints. We suppose the geometry of the assembled system is defined with
respect to a global framet and use a superscript o to indicate quantities referred
to the global frame. The external force and displacement matrices for joint k
are denoted by 225, U;:
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where o is the number of translation (force) components, f§ is the number of
rotation (moment) components, and i = o + . Notethatx = 2, = 1fora
planar system subjected to in-plane loading and o = I, § = 2 for a planar
system subjected to out-of-plane loading. For an arbitrary system, o« = f§ = 3.

In what follows, we assume the material is lincarly elastic and the geometry
is linear, ie., we neglect the change in geometry due to deformation. The
governing equations consist of joint force-equilibrium equations and member
force-displacement relations. We have already developed the member force-
displacement relations in Chapter 15, so that it remains only to establish the
joint force-equilibrium equations. In this chapter, we apply the direct stiffness
method, which consists in assembling the system stiffness and initial force
matrices by superimposing the. contribution of each member. In the next
chapter, we present the general formulation for a linear member system and
obtain the equations corresponding to the force and displacement solution by

(16-1)

t By global frame, we mean a fixed cartesian frame.
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matrix operations. Finally, in Chapter 18, we extend the direct stiffness method
to include geometrical nonlinearity.

16—-2. MEMBER FORCE-DISPLACEMENT RELATIONS

In developing the relations between the end forces and end displacements
for a member, we considered the member geometry and loading to be referred
to a basic member frame (frame n) and used 4, B to denote the negative and
positive ends of the member. The general relations were written (see (15-107))
as ,
= T+ KUy + Ky
"= F L+ KETUY + KL

o1
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Note that (a) also applies when there is only partial end restraint or internal
releases. i

Now, we define n,, n_ as the joints at the positive and negative ends of
member n. Replacing B by n,, A by n_, the {orce-displacement relations for
member n referred to the member frame take the form

G, =T, KLU, K, U

_n+ ~ (b)
. =T+ KU, KU
where
Ky, = (ki,.)" (c)

We transform the force and displacement quantities from the member frame
to the global frame for the system by applying

U" = R"U°

F = eUztm. Tg-;u (16—2)

to(b). This step is necessary since we are working with joint forces and displace-
ments referred to the global frame. The final expressions are:

Fo, =70+ KLU, + K, U

16-3
T =G kiU, + K, ( )

where the global member stiffness and initial force matrices are generated with

ko = "0""71‘3)( A" (16-4)

cg,"(o),i = %0”' regt?)‘i

Once the displacements are known, we evaluate & ¢, using (16-3) and then
transform to the member frame.

Since the initial end force and stiffness matrices are generated in partitioned

form, it is natural to express (16—4) in partitioned form. Using the notation
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introduced in Section 15-8, we write
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Expanding (16-4) leads to
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Note that k{y, is a natural property of the member whereas k{), depends on
the orientation of the member frame with respect to the global frame. The
operations defined by (16--6) can be considered as the element matrix generation
phase.

The member force-displacement relations satisfy the equilibrium conditions
for the member and compatibility between the restrained end displacements
apd the corresponding joint displacements. Actually, the equilibrium condi-
tions were used to determine F. Compatibility is satisfied by setting U, =
U,, and U, = U, . When there is only partial restraint at an end, there will
be displacement discontinuities. For cxample, if there is a rotation release at
the positive end, o, will not be equal to the end rotation matrix. We have
treatedf partial end restraint by defining an effective member stiffness matrix
k.. In the derivation of k., we consider %, U 4 to be the displacements of the

supports (i.e., the joints) and enforce continuity of only the restrained end
displacements.

(16-6)

16-3. SYSTEM EQUILIBRIUM EQUATIONS

The equilibrium equations for joint k arc obtained by summing the end
forces for the members incident on k:

@2229_7?++Z£77{’_ - (a)
re=k t-=k

t See Sec. 16-12.
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In general, 22} depends on %}, and the displacements of those joints which are

connected to joint k. We define £, % as the total (or system) external joint -

force and joint displacement matrices:

P=(PLP. P (% ])

16-7
U = {U,US, ..., U (i x 1) (16-7)

and write the complete set of ij joint force-equilibrium equations as

P =P, + AU (16-8)

where 2, contains the joint forces required to equilibrate the initial end forces
We have dropped the reference frame superscript for convenience.

The most efficient way to assemble ¢ and 2, is to work with submatrices
of order i, the natural partition size, and superimpose the contributions of
each member which follow directly from (16-3). This operation requires no
matrix multiplications. The terms due to member n are listed below.

In P, (Partitioned Form Is j x 1):

Fo.; inrown,

= . (16-9)
F in row n_
In A (Partitioned Form Is j x j):
ki, ., in row n,, column n,
ky ... in row n,, column n_ (16-10)
. T ; -
ky inrow n_, column n,
| o in row n_, column n_

Since A" is symmetrical, only the upper or lower half has to be stored.

16-4. INTRODUCTION OF JOINT DISPLACEMENT RESTRAINTS

In this section, we extend the procedure described in Sec. 8~3 for introducing
joint translation restraints in the formulation for an ideal truss to an arbitrary
member system. Actually, only the notation for the joint force and joint
displacement matrices has to be changed.

The governing equations are:

H 1y Ky, VATIRE 4 —~Po 1+ P Pn.1
%{2 .%’;22 %;21' dl/% _ —7’§2 + 25 _ g’Nz (16-11)
Al A Ay \U ~P5; + 7 PN j

The stiffness and initial force matrices are assembled using (16-9) and
(16-10). It remains to introduce the prescribed external forces and displace-
ment restraints. If joint g is unrestrained, £ is prescribed, and we just add
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Pqto —2; .. 1l joint g is completely restrained, 225 is unknown. We replace
the matrix equation for 2 with the matrix identity,

w; = 7 @

Finally, if joint q is partially restrained, some of the clements in 2 are unknown.
In this case, we replace the scalar equations for the unknown reactions by
scalar identities.

We suppose joint g is partially restrained and, for generality, consider the
translation and rotation restraint directions to be arbitrarily orientated with
respect to the basic frame. We define X7, ..., X/ as the orthogonal directions
for the translational restraint frameand X{,..., X ;s as the orthogonal directions
for the rotational restraint frame. Quantities referred to the restraint frames
are indicated with primes and a single superseript is used for the total matrix:

u, (@x1)
q _ )4
g = 31
(ix1) O, Bx1)

) (16-12)
n- 4
T‘I
Now,
Po = RP; (16-13)
T, = R{¥'T;
We define 22°7 as the total rotation transformation matrix:
qu' " 0
ROV = | -
[0 ~I+ Ry J (16 14)
With this notation, the transformation laws take the form
Py = RGP |
(16-15)

UG = R U

The modification requires two operations. First, we transform P, Uy in
(16-11) to ¢, ;. This is accomplished by premultiplying row q of 24", 2,
with 22°¢ and postmultiplying column g of 4" with #°¢-". In the second step,
we replace the equations corresponding to the unknown elements in 21 with
identities. This operation can also be represented in matrix form.

Suppose the rth element in %% is prescribed. We assemble four matrices,
E,, G, %3, and 2}, as follows:

1. E,and G,
We start with

and set
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2. a

We start with an ith-order column matrix having zero elements and set the
element in row r equal to the prescribed displacement.

3. P}
We start with an ith-order column matrix having zero elements and enter
the values of the prescribed forces and moments referred to the restraint frames.

Note that element r is zero.

Premultiplying transformed row g of 47, 2, with E, reduces the rth equation
to 0 = 0. Then, adding G, to E, 4", and 2% + ¥} to —E, 2, , introduces
the identity for the rth element of %2 and includes the prescribed external forces
in Py, We also operate on the gth column of A~ to preserve symmetry and
include the terms due to prescribed displacements in #2y. The complete set of
operations for joint g are listed below: :

I. £ =1,2,...,q~1
P = Py ~ (H R DYUF
H oy = (A R T)E,

2. Py, = B[R Py | — (BH (R TYUE] + U + P
H gy = EfRH (R DE, + G, (16-16)

3. b=qg+Lg+2,...,]

H g = By RUH )
Py Py — («/fif(@-"“‘ T)%:,k

i

The operations defined by (16~16) arc carried out for cach joint, working
with successive joint members. We represent the modified equations as

KUY = PF (16-17)

The superscript J is placed on % to indicate that the joint displacement matrices
are referred to the local joint restraint frames, which may not coincide with the
global frame. Again we point out that the primary advantage of this modifica-
tion procedure is that no row or column rearrangement 1s required. Solving
(16-17) yields the joint displacements (local restraint frame) listed in their
natural order, i.e., according to increasing joint number. The modified stiffness
matrix, J*, will be positive definite when the system is stable.

Once %’ is known, we transform the displacements from the restraint frames
to the global frame, using (16—15), and evaluate the member end forces from
(16-3). Next, we assemble the total external force matrix, 2. The contribution

£
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of member # is

7, in row n,
T inrow n_ {16-18)
Finally, we transform the external joint forces from the global frame to the

local restraint frames Thi i
| re: S. 1is step determines the reaction i
statics check on the solution. *and also provides a

Example 16-1

Suppose joint ¢ is completel i . . o
for E. C: are ompletely restrained. Then, Uy = U, and P¥ = 0. The forms

- E =0,~ == §.
and (16-16) reduces to ‘ Co=1 @)

P = Py — H UL

Hyg =10,
2 ‘gDN,q = ﬁl?ﬁ,’
Koy = (b)

S l=q+1lg+2...
J{q(m(}i
g’N.(mg,N,[“n#;;j(?:’)

Example 16-2

Suppo:fe Joint g is completely restrained against tr
matrix ug and external moment matrix T°
this case are !

! anslation. Then, the translation
are prescribed. The appropriate matrices for

= ™
ur = 5'3—} v = 0 @)
¢ {On 1 'T;'

Example 16-3

tio‘:}Vz ;;ms)der fhe case where joint g is restrained with respect to translation in one direc

1ere 18 no restraint against rotation. This ¢ “ s

We tais e 0 . otation. This corresponds to a “roller” support,
1 oincide with the restr, : ¢ !

restraint direction and X, X i as mutually orthogonal

dlxeLtIOIls C()mpl BIng ar g t- Hded gy { . l € ]d“g]au()]l u is p!eSC“I)C(L ] ]
g 1 h ha System h t 5 g 1s
pIeSCIled fOIces are 1 q2> i /113) aﬂd '[q' ) h
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We first assemble 2%, From (16-14),

R I
R [’"’3“1’_“_} (a)
[ 6
where i
RY =[] rs=123
£,y = cos(X, X2) (®)

The forms of E, G, %*, and 2°* are

0 b
1| 0 !
E, = } G, = 1’
BN el AR
. & 1 0;
" 0 (c)
0 P
(I?l;; = O ’oj):ik = _?.2
——— _:q‘
0, v

We specialize the results for a planar system subjected to planar loading. In order for
only planar deformation to occur, the translation restraint dircction must lie in the plane
of the system, which we take as the X-X§ plane. It is convenient to sclect the orientation
of X’ such that X} coincides with X%. The specialized forms are

O. | T !
1 : 0 E @
| .
R e Bl
T, 0
0 P,
U =t pr =
q 0 q 7‘;3

Finally, we consider the case of a planar system subjected to an out-of-plane loading.
The translational restraint direction must be parallel to the X§ direction in order for only
out-of-plane deformation to occur. For this case, ugs, Tqy, and T4, are prescribed. The
specialized forms are

3

0! L
-] ool
i L i 0y

0
ﬁo e
Uy = {Jzi} PE =T ©
@

Note that (e) is obtained by setting ¢ = 1, f = 2 in (a) of Example 16-2.
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