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Direct Stiffness Method 

--- Linear System 

16-1. INTRODUCTION 

We consider a system comprised of mnmembers which are connected at j 
joints. We suppose the geometry of the assembled system is defined with 
respect to a global fi-amet and use a superscript o to indicate quantities referred 
to the global frame. The external force and displacement matrices for joint k 
are denoted by ,k ok 

(16-1) 
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I where is the number of translation (force) components, f is the number of
i 

rotation (moment) components, and i = + . Note that c = 2, /3 = 1 for a 
i planar system subjected to in-plane loading and = , / 2 for a planar 

system subjected to out-of-plane loading. For an arbitrary system, or= = 3. 
In what follows, we assume the material is linearly elastic and the geometry 

is linear, i.e., we neglect the change in geometry due to deformation. The 
governing equations consist of joint force-equilibrium equations and member 
force-displacement relations. We have already developed the member force­
displacement relations in Chapter 15, so that it remains only to establish the 

B
joint force-equilibrium equations. In this chapter, we apply the direct stiffness 
method, which consists in assembling the system stiffness and initial force 
matrices by superimposing the. contribution of each member. In the next 
chapter, we present the general formulation for a linear member system and 
obtain the equations corresponding to the force and displacement solution by 

t By global frame, we mean a fixed Cartesian frame. 
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matrix operations. Finally, in Chapter 18, we extend the direct stiffness method introduced in Section 15-8, we write 
to include geometrical nonlinearity. 

(a x M) 

16-2. MEMBER FORCE-DISPLACEMENT RELATIONS 
'Ron Rn _I' ­

( xfl 
In developing the relations between the end forces and end displacements

for a member, we considered the member geometry and loading to be referred {)} ( x1) (16-5)to a basic member frame (frame n) and used A, B to denote the negative and 
positive ends of the member. The general relations were written (see (15-107)) (a x a) (c x A) 

as k°°-Lkf ><> l l- A--k(-) 1 
E+= ik kB ++ k BA "'A 

ko() 
Ep()n,21 ko(), 22t

(a) ( x a) (#x f)
ri~ --

Expanding (16-4) leads to 
Note that (a) also applies when there is only partial end restraint or internal " lreleases. koo I Ron, rk)(), Ron 

Now, we define n+, n_ as the joints at the positive and negative ends of koo)(), 12 = 
Ron, Tkn 12Ronmember n. Replacing B by n+, A by n_, the force-displacement relations for ko)(), 21 - ()(), 21 a -k ((),12

member n referred to the member frame take the form ko)( 22 - R"' Tk)( ) 22 Ro, (16-6) 
on, Tnn 

,fan1 =- ynn +,i +t kn,+.+n .7 + k t++nn At ,tl_ M( ), = Ra F),i
-

n,_ ¢ , ,.i + " k, _ .,+'I + k ,_I . 
(b) M0 i- Rfl Mln+ _ 

where Note that ko)() is a natural property of the member whereas kl() depends on
the orientation of the member frame with respect to the global frame. The 

k;n_ = (k"4 )Tl (c) operations defined by (16-6) can be considered as the element matrix generation.1+/_ T phase. 
We transform the force and displacement quantities from the member frame The member force-displacement relations satisfy the equilibrium conditionsto the global frame for the system by applying for the member and compatibility between the restrained end displacements

and the corresponding joint displacements. Actually, the equilibrium condi--n = "onl°,o 

. = on T*,n (16-2) tions were used to determine jA'.Compatibility is satisfied by setting gB = 
9,,+ and q1A = _ When there is only partial restraint at an end, there will 

to (b). This step is necessary since we are working with joint forces and displace- be displacement discontinuities. For example, if there is a rotation release at 
ments referred to the global frame. The final expressions are: the positive end, o,+ will not be .equal to the end rotation matrix. We have 

treatedtf partial end restraint by defining an effective member stiffness matrix 
n+-O~0 n+ i ,n, + ko +n-6to ke. In the derivation of k,, we consider q'B, 1l to be the displacements of the 

go° = 9-~,_ i + ki.- 1+/no+ + k- -tr/" 
(16-3) supports (i.e., the joints) and enforce continuity of only the restrained endn 

displacements. 
where the global member stiffness and initial force matrices are generated with 

,,wo 16-3. SYSTEM EQUILIBRIUM EQUATIONSko)() = ,7'k ) ? (16-4)0 ,o T n 
i The equilibrium equations for joint k are obtained by summing the end 

Once the displacements are known, we evaluate 3VO) using (16-3) and then 
forces for the members incident on k: 

transform to the member frame. 
Ek + + L o (a)Since the initial end force and stiffness matrices are generated in partitioned 'i r+ =k t- =k 

form, it is natural to express (16--4) in partitioned form. Using the notation 
I t See Sec. 16-12. 
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In general, 9P depends on #/' and the displacements of those joints which are 
connected to joint k. We define N, 91 as the total (or system) external joint 
force and joint displacement matrices: 

9= ",o, ... , ¢i'} (i x 1){ .
t {=i 2',·t} , (i x 1) 

and write the complete set of ij joint force-equilibrium equations as 

N3= 9 + , (16-8) 

where Jocontains the joint forces required to equilibrate the initial end forces 
We have dropped the reference frame superscript for convenience. 

The most efficient way to assemble ,X' and 9,o,is to work with submatrices 
of order i, the natural partition size, and superimpose the contributions of 
each member which follow directly from (16-3). This operation requires no 
matrix multiplications. The terms due to member n are listed below. 

In ,, (PartitionedForm Isj x 1): 

in row tn+ 
(16-9) 

.n-,i in row nt_ 

In 'X (Partitioned Form Isj x j): 

k+,,,. in row n+, column n+ 
k+,_ in row n+, column n_ 

(16--10)
kn+T in row n_, column n, 
kn S in row n_, column to_ 

Since Xf is symmetrical, only the upper or lower half has to be stored. 

16-4. INTRODUCTION OF JOINT DISPLACEMENT RESTRAINTS 

In this section, we extend the procedure described in Sec. 8-3 for introducing 
joint translation restraints in the formulation for an ideal truss to an arbitrary 
member system. Actually, only the notation for the joint force and joint 
displacement matrices has to be changed. 

The governing equations are: 

"i1 = - oP,= 'AN 

* *-( o t + 91 (N. I 
o 12 

11 r 22 
·.= -.-T 2 + q0I_ (16-11) 

,y{T
_sIj 2i t J~ 0.1 o 

The stiffness and initial force matrices are assembled using (16-9) and 
(16-10). It remains to introduce the prescribed external forces and displace­
ment restraints. If jnt nt q is unrestrained, W,' is prescribed, and we just addIIJVI~II~LLI~LICIL.L·I LIIULI~IIU e ( L1~JV~UIV~) I1 *VJ O LU 

SEC. 16-4. INTRODUCTION OF JOINT DISPLACEMENT RESTRAINTS 

q to -_o. q' If joint q is completely restrained, 9 is unknown. We replace 
the matrix equation for 9q with the matrix identity, 

(a)q = 

Finally, ifjoint q is partially restrained, some of the elements in 9 qare unknown. 
In this case, we replace the scalar equations for the unknown reactions by 
scalar identities. 

We suppose joint q is partially restrained and, for generality, consider the 
translation and rotation restraint directions to be arbitrarily orientated with 
respect to the basic frame. We define X1, . . , X as the orthogonal directions 
for the translational restraint frame and X',..., X/ as the orthogonal directions 
for the rotational restraint frame. Quantities referred to the restraint frames 
are indicated with primes and a single superscript is used for the total matrix: 

q = fU l (a X 1) 
(i x ) (o J (f x 1) 

(16-12) 

Now, 
P, = Roq'p o 
T'qil - R q"To (16-13)

q 

We define °q as the total rotation transformation matrix: 

-oq =[--- (16-14) 

With this notation, the transformation laws take the form 

jq = ,Woqfo 
qt'o '1 

9, -= Roq, T9 1 q (16-15) 
q ,~~~~q 

The modification requires two operations. First, we transform 9.0~, in 
(1.6-11) to P,9, ql. This is accomplished by premultiplying row q of , ~0 
with ~q and postmultiplying column q of.Y with .oq r. In the second step, 
we replace the equations corresponding to the unknown elements in qqwith 
identities. This operation can also be represented in matrix form. 

Suppose the rth element in °lq9is prescribed. We assemble four matrices, 
Eq, Gq Cqi*, and *, as follows: 

1. Eq and Gq 

We start with 
E = Ii G = Oi 

and set 
Err = 0 G,.,. = +1 
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2. 9i, of member n is 
'in tn lWe start with an ith-order column matrix having zero elements and set the in row n, 

element in row r equal to the prescribed displacement. in row nz_ (16-18) 

Finally, we transform the external joint forces from the global frame to the3. Jv q local restraint fames. This step determines the reactions and also provides a 
We start with an ith-order column matrix having zero elements and enter statics check on the solution. 

the values of the prescribed forces and moments referred to the restraint frames. 
Note that element r is zero. Example 16-1 

Premultiplying transformed row q of J, s. with Eq reduces the rth equation Suppose joint q is completely restrained. Then, l -= 4qf and ., = O. The formsto 0 = 0. Then, adding Gq to Eq,.,qq and ~F.OI+ q to - Eq5%0,q introduces for E, G are ' o a 
the identity for the rth element of tq and includes the prescribed external forces E = oi Gq = Ii (a)in ~N,q We also operate on the qth column of .' to preserve symmetry and and (16-16) reduces to 
include the terms due to prescribed displacements in ,PN. The complete set of 
operations for joint q are listed below: 1. = 1,2,...,q-

1. = 1,2,...,q-
~.tq = It 

° q YTN, = M (t. qN,! qrq*-

tats = ('eq.~ °qT)Eq 2. 
p,i. = o 

:-yrqq = li (b) 
2. 'DNq = EqC['~°q~N,q- (-°q"'qqq, T)dlJq] + q* + rap* 

' 7fqq = _E(g°qz;"q + Gq (16-16) 3. =q+ I,q + 2,....jT)E 

3. = q+l,+ 2,...,j 

4q Fq(^V@<)(l"q* Example 16-2 
by, t -eI -- ( c/q, T,)?i* 

Suppose joint q is completely restrained against translation. Then, the translationThe operations defined by (16-16) are carried out for each joint, working matrix u and external moment matrix q are prescribed The appropriate matrices for
with successive joint members. We represent the modified equations as this case are 

-;* Z-J = ONv (16-17) 

The superscript J is placed on !/ to indicate that the joint displacement matrices F,[ _ (a)are referred to the local joint restraint frames, which may not coincide with the 
global frame. Again we point out that the primary advantage of this modifica- WOq= Ii 
tion procedure is that no row or column rearrangement is required. Solving
(16-17) yields the joint displacements (local restraint frame) listed in their Example 16-3 
natural order, i.e., according to increasing joint number. The modified stiffness We consider the case where joint q isrestrained with respect to translation in one direc­matrix, '*, will be positive definite when the system is stable. tion and there is no restraint against rotation. This corresponds to a "roller" support.Once J is known, we transform the displacements from the restraint frames We take X to coincide with the restraint direction and X, X as mutually orthogonalto the global frame, using (16-15), and evaluate the member end forces from l directions comprising a right-handed system. The translation, u', is prescribed. The(16-3). Next, we assemble the total external force matrix, . The contribution prescribed forces are Pq2, P 3, and Tq. 

,, 

l 
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We first assemble Woq. From (16-14), REFERENCES 

q= --- q, 13 (a) 1. LIVESLEY, R. K.: Matrix Methods of StructuralAnalysis, Pergamon Press, London, 
1964. 

where 2. MARTIN, H. C.: Introductionto MatrixMethods of StructuralAnalysis, McGraw-Hill, 
Rq= [,,] ,s 1, 2,3 New York, 1965. 
e, = cos(X, Xs) (b) 3. RUBINSTEIN, M. F.: gMatrix Computer Analysis of Structures, Prentice-Hall, New 

York, 1966. 
The forms of E, G, 6/*, and .** are 4. Gere, J. M. and W. Weaver: Analysis of Frained Structures, Van Nostrand, New 

York, 1965. 

E,1- I G, G.=- oEq =[1J 

: (c) 

qt* =l
Lo

ok*=;; 
0 . q¢J
3[ 

We specialize the results for a planar system subjected to planar loading. In order for 
only planar deformation to occur, the translation restraint direction must lie in the plane 
of the system, which we take as the X -X' plane. It is convenient to select the orientation 
of X2 such that X coincides with X.,. 'Ihe specialized forms are 

R2q' = [.,] is 1, 2 
f", = cos(X;, X°) 

(d) 
Eq Gq o 

0/4- jll =F q
Ol q_f*-$Ou;9 )Jr; 

Finally, we consider the case of a planar system subjected to an out-of-plane loading. 
The translational restraint direction must be parallel to the X3 direction in order for only 
out-of-plane deformation to occur. For this case, u¢q3, T'q, and Tq2 are prescribed. The 
specialized forms are 

Eq[ = 13 

E, = - G, =_1_;___~ 
LI [_ 02J 

O/ is 
{ O (e)q ((02 

tq2J 

Note that (e)is obtained by setting = 1, f = 2 in (a) of Example 16-2. 


