1.571 Structural Analysis and Control
Prof. Connor
Section 4: Non-linear Analysis of Trusses

4,1 Notation and key definitions

4.1.1 Deformation

-,

= [cose sine]

1Q
|

(gon)
|

= [coqu sin qﬂ

Then

where

Combine terms

(L+¢€)2 = (Lsin®+v)2+ (LcosB +u)?

(L2+2Le+e?) = L2+ 2eL(l + i) = L2+ 2eL Assuming e « L

L2+ 2eL =L2s2+2Lsv+Vv2+L2c2+2Lcu+ u?
s = sin@ and ¢ = cosO

L2(s2+c2)+2Lsv+Vv2+2Lcu+u?=L2+2elL

1
= cu+sv+—(u2+v?
e = cu+sv 2I_(u v4)

E

e = au+ u'u
T

B = [coqu sinqﬂ

sy = LB _ SO
vy = LBB2Y _ S8 /L - i,
Then B= {cose+H sine+y}
L L
B = a+pul
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4.1.2 Force
_ AE

F = 2=
Le

F has direction defined by

Define
P = End action matrix
P = Fcosy| _ FBT
Fsiny -
At positive end Ploong = *P
At negative end E|—end = _P
(+) ¥
(+)_pY
=

4.2 Incremental Equations

4.2.1 Deformation
Consider an incremental end displacement that changes u to u+ Au. Find the corre-

sponding change in elongation from e to e + Ae.
1

= + — T
e = au+_ru'u
(e +Ae) = g(u+Au)+i(u+Au)T(u+Au)
(e+Ae) = au+aAu+ i(l_ﬂu +UuTAu+ AuTu + AuTAu)

Ae = (e+Ae)-e = aAu+ %UTAU + iAuTAu

Ae = de+ %dze

If Au is small in comparison to u, it is reasonable to take Ae = de
Then Ae =BAu
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4.2.2 Force

o
A E%/
Non Linear Stress-Strain
o = a(g)
Ag >:»:
o+Ac = o(e+A)
From a Taylor Series expansion
00 19%0
Ao = —=NAs+=—Ae?2 + ..
ot 2 9g2
00
Note — = E
ote e t
We want the change in stress due to the change in displacement
€ = le
L
1, 1( 1 2)
= = = = + =
Ag LAe L de 2d e
So
dolAe (162 )
= ——+4|=
Ao de L 2652A
Ao = d0+%d20+...
_done _ B _E
10=%1L ~ d L[—BALJ
dod2e 62 Ae\? _dod2e . 020
d2g = 999°€ , O9(8e)" n00Ce | 09 ge)2
=3 L "o/ Yae L Tae2l®®
The incremental forces are
F=Ao
AF = AAo = Ad0+'§d20
AE;, AE;
Set dF = Ado = —de = —(Au
L L =
A
2F = B2
d<F 2d o
AE;
Tk
Then dF = kde = k,BAu
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4.2.3 End Actions

P =Fp'

Consider the change in u to u + Au and get the corresponding
(P+AP) = (F+AF)(BT +ABT)
(P+AP) = FRT+FABT + AFBT + AFART
AP = (P+AP)-P = FABT + AFART

AP = dP + %d29+

dP = FdpT + dFpT

B(u+Au) = B+AB = B+@AUT+1£§AUTAU
BUTAU) = P+aAR = BT 5,80 T o5ty A

0

e

dp = TAuT  dBT = fAu
So
- kaTau+F
dP = kB [_3Al_J+[Al_J
Can write as
dP = k;Au
where
k; = Tangent member stiffness matrix
F
ky = kiBTB+ L
AE; F
o = (THere !
where | = 10 Iden tity matrix
01
AE : : :
So (T) BT is the pseudo linear stiffness based on the deformed
position defined by B or a.
and E! is the “geometric” stiffness due to initial forces.
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4.2.4 lllustration - Geometric stiffness associated with an initial force

FsinAeT /F
- FcosAB
Av - - y
F — VA6
- - 1 »F X
L Au
Au = Au
Av
Geometric term of dP = Fl10]|Au
Lo 1]|Av
FlAu
dP = -
This can also be done by inspection
dP = FcosAB - F
FsinAB
Assuming small deformations (e « L)
L+Au Au
AD = =1+ —
cosAf L+e L
. Av _Av
nAG = —=—
sinAB e
Therefore
Au
+ —_—
_ F+F L F _ FlAu
dP = =
AV Llav
L
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4.3 System of Incremental Equilibrium Equations

Pe = External load vector

P..: = Nodal load vector due to end actions
For Equilibrium

EE + (_Eint) =0

EE = Eint
Let u* be an estimate of displacement due to P,

Pi,:(u*) = Load vector (end actions) due to u* = P*; .

Equilibirum imbalance = P, - P*;

Let Au be an estimate of the “correction” required to satisfy equilibrium.

The correction is found with: k*Au = P.—P*, . where k* is a “predictor” stiffness
matrix.

Once Au is found, update P*. . and k* and use to determine another correction.

int

This process is repeated until the equilibrium error satisfies the specified convergence
criteria.
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Various choices for k*

1) kK* = Kjipear > the initial stiffness matrix
P
AP -
Py
Uy U; Uy U3

Successive iterations use the initial stiffness

Can also start with an inital displacement

iz

P

Uo

2) k* = k, ; the instantaneous tangent stiffness matrix

u
U, 1

Update k, at each iteration. Requires less iteration but is computationally more
expensive.
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Example using k* =

E = constant

g2 h
sin@ = 3
Pc=P P.,t = 2Fsin®
Using symmetry
P/2
7
Find the tangent stiffness of the system
S
[_3 - g+|_u - g+L[UV]
u=2~0
o = [cos6 sin)
B = {cose } Ov] = {cose E+ﬂ = [coqu sian]
dP = kBTBAu + LAu
Au = 0
Av
dp = k| Cos?y singcosy {0} +E{O}
B singcosy  sin2y | |Av] LAy
Set dP = 0
AP/2
. F AP
2 Ay = 2F
So ksincpAv + LAV >
SSRGS
Z(k(L+ + 3 Av = AP
. : h  v)?2
At each interval k,(v, F) = Z(k([ + =] + =] must be updated.
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For initial step take

F=0 _ .h
Set
P
k., v = -~ VvV, = —
to'o 0 kto
P
and Fo = 25Ny

Update k; to ki, by including v, and F,

Get P, = kyV,
P,+AP, =P - AP, = P-P,
KiyVo + kyAv = P

Then

P-k.,v
Av, = t1 V1
K

Repeat until Av <v,, or AP, <P,
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4.4 Linearized Stability Analysis
4.4.1 Bifurcation

The system incremental equation expressed in terms of the instantaneous tangent
stiffness matrix

AP = KAu
AP = load increment from the equilibrium position (P*, u*)
Au = first order estimate for displacement increment due to AP

Then Au can be evaluated using
Au = (K) AP
and update P*, u*, K, and AP

Question: What happens if K, becomes singular?

If |K| = 0, K, is singular and there exists a non-trivial solution of K,Au = 0. This
implies that there is more than one equilibrium position for a given load.

Suppose |K| = 0 for u* and P*. Then, u* + Au is also a solution for the loading P*.

The existence of multiple equilibrium positions for a given loading is called
“pifurcation.” In order to determine the structural behaviour in the neighborhood of a
bifurcation point, we need to include second and higher order terms in the
incremental equilibrium equations. Bifurcation is viewed as an intermediate state.
The position is neither stable nor unstable. The terminology “neutral equilibrium” is
used to interpret “bifurcation.”

4.4.2 Linearized Analysis

Consider the case where the equilibrium position (i.e. the displaced position) is very
close to the initial unloaded position. In this case, it is reasonable to neglect the
difference between the direction cosines for the initial and deformed configuration.
The expression for the member tangent stiffness reduces to

_ F, _ F
Kt‘kthgJ“[! = kt9T9+[!

When the material is linear elastic and the member is prismatic k, = AE

This can be stated
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Using this result, the system tangent stiffness matrix is expressed as
Ki = K+ K
where

K, = linear system stiffness matrix

Kg = “geometric” stiffness matrix containing the terms involving
the memb er forces

K, depends on the loading. As the loading is increased, \Kt\ varies from its initial

linear value |K||. Depending on the loading and structural makeup, |K may decrease

with increasing load and eventually reach 0, at which point a “bifurcation” occurs. To

evaluate whether this is possible, one evaluates ‘KI + Kg\ as a function of the loading.

4.4.2 Example 1

L
P,v
Y kl V
A @D B u
@\ k, L
C
7
From equilibrium

k, O
kg 0Ky = Ll 0}

00| Fal10
k., Ok, +k ., = + =
K, = 00|, |-P/L O©
0 k, 0 -P/L

« - [k=P/L 0
- 0 k,—P/L

Solve Ky = (k;—=P/L)(k,—P/L) = 0
Giving

For P
For P = k,L; Av is arbitrary

k,L; Au is arbitrary
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4.4.3 Modified Geometric Stiffness Matrix
1 T .
B = C+o e(A)_( + Au)' (exect expression)
For (+) and (-) ends
Ax = difference in nodal coordinates

Au = difference in nodal displacements

Au = Au
Av

Case 1 Ay 00 (Element ~ parallel to x direction)

Au will be small wrt Ax

Then dBT = —Adu = %

.
and FdBT = E 0 - 0 0 Adu
- L |Adv 0 F/L||Adv

Case 2 Ax 0 (Element ~ parallel to y direction)

Av will be small wrt Ay

BD}{AX+AU !
~ L Ay

.

Adu

B

T
and FdpT = F|Adu| _ |F/L 0]|Adu
- Lo 0 0 |Ady

= 1

Then dpT =

i
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Generalizing

Examine

If a, close to 1, take E = 00
01
If ay close to 1, take E = 10
00
4.4.4 Example 2
P
» Ly \J
@ R
Y,v @ L,
X,u

Ll
00|l [-2o0

t2 1L

0k,
k- 0
_ L2

Kt - R
0 k-
2 Ll
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4.4.5 Equilibrium Approach

Perturb structure from its initial equilibrium position, holding the loading constant.
Apply equilibrium equations to the perturbed position. Determine whether a non-triv-
ial solution for the “perturbed” displacement is possible. This approach is also seeking

whether |K| = 0. However, one does not formally establish K.

Example 3
P
.
B
A
M, = 0 = FL-PAu
F = kAu
Then
kKAuL = PAu
P., = kL
Example 4
P

7y ko
B
L,

kg
L,

A

7
Equilibrium Equations

ZMtopofB = P(AUZ_Aul) = FyL,
ZMA = PAu, = F,(L; +L,)+F L,
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Member Relations
F, = kjAuy
F, = k,Au,

Then
P k,L,-P Auyl o
[lel ky(Ly +L,) - P] [Auj B M
Solve by setting detrminant = 0
P2-P(k,L, +k,(Ly +Ly)) + kik,L,L, =0
If k, = k,and L, = L,

P _1 _
i 2{3iﬁs} = 0.38, 2.62

Au, = Aul{ﬁ} « Mode Shapes

4.4.6 Eigenvalue Approach

For the case where the loading is defined in terms of a single parameter, A, one can
interpret linearized stability analysis as an eigenvalue problem.

Write
F = AF
F
l—('[ = k|+[!
Set
ke = k= Akg

and the equilibrium equations can be written as
kiAu = Ak Au
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