1.571 Structural Analysis and Control
Prof. Connor
Section 3: Analysis of Cable Supported Structures

Many high performance structures include cables and cable systems. Analysis and
design of cable systems is a complex topic. Individual cables have a non-linear
equivalent stiffness. In addition, the interaction between multiple cables must be
considered. In order to be able to analyze and design cable supported structures, a
number of different topics must be covered.

The topics to be covered are:

3.1 - Cable equations

3.2 - Modeling of beam with single cable using an equivalent spring

3.3 - Modeling of beam with multiple cable using a beam on equivalent elastic
foundation

3.4 - Design procedures for cable/beam system
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3.1 Equations of a single cable

3.1.1 Equilibrium Equations

YA

94/; V(X)

I,

When b = 0;

For self-weight

AX
_ 0 _
Z F, = —Tcos6 + Tcosb + a_X(Tcose)Ax +b,Ax =0

g_X(Tcose) +b, =0
SF, = —Tsin9+Tsin9+%(Tsin9)Ax—wa =0

9 - .
—(T —W =
ax( sinB)—-w =0

;—X(TCOSG) =0 - TcosO = H = constant

y = weight of cable / unit length

WAX = YAS
wdx = yds
_dx
ds = cosf
dx _ 1

W= Yaxcosd ~ Ycoso
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T cosB
__H & a_
TN = ——=snB = htan®
cosO
_dv
tan@ = ax
So
MG~
cos8
Knowing
cos@ = =
d_
d
we get
d 2
d_
3.1.2 Example
Y
'
V(X)
§ :
>
Boundary Conditions
dv| _ _
x|, =0 v(0) = b
Solution
2
dv _  dv_dp _ Y
Let ax - p,dxz— OIX,andcp— H
SO
%9 = gJ1+p’
X
I—L dex

A/1+p

Integration by parts leads to

In(p+/1+p°) = gx+C,
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X + C C
p+'1+p (P 1:ele(pX:CZe(px

for
g—\): =p=0atx=0
C,=1
Then
p+p’+1 = ¥
p +1=2¢" —p
p +1 =% 2pe +p
eZ(px_
2p = ( j =e¥_e¥®
(PX
e
dV (px —(px
= ( )
Integrating
vV = (e X+ ? )+C3
fory=batx=0
Cy=b-==p-0
¢ Y
Setting b = % (for convenience)
C;=0
Finally
Y, o Yy
v = H(eH +e Hj
2y

vV = %costhlx = caternary (chain)

at any point along the cable

- _H
cosO
Then
d:DZ
T = 1+(— H
d
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For w = constantand b = 0O

TcosOB=H - T= _H_
cosB

9 .
~—(TsinB)—w = 0
aX(sm)w

0
— (Htan®)—-w = 0
ax( anf) —w

0 (,0v _
a_X(Ha— w =20
5%
_ 1 2
then Hv = C; + C,x+ Swx

2
Boundary Conditions
X=X, V=V
X=X, V=V,
3.1.3 More Examples
Example #1

N oTrYYYYYYYYYYY

L/2 P

v=0atx=1L/2
v,, =0atx =0
Hv = C1+C2x+%wx
Hv, = C,+wx

then
C, =0

C, = —%(IE) 2W
v(x) = iw(xz—(%‘)z)

WL2
V(0) = Vi = 8_H =h
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Example #2

Point1atx=0 v; =0

Point2atx = L atv, = v_

C, =0
1 1 2
C2 = [(HVL_EWL)

and
2
= X, 4 WLI(X)2 X
vO) = PVt o (L) _L)

deflection from chord
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3.1.4 Geometric Relations - Arc Length

YA

—~

V(X)

ds® = dx® + (v, ) dx’
ds = dx(L1+(v,)2) "

S X2 2.1/2
sp = [ ds= [ (1+(v)) o

Simplification for shallow curve

(v,X)2 small wrt 1

So
snB=tanb = v,
cosf=1
TcosO=T

Then

T=H = constant if there is only loading in the y-direction

Consider cable in Example #1

T
_
X
L/2 —®  L/2
A 7
2
- 5 (-(29)
v = Sa\-\D
2
wL
Hh = ==
8
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Differentiate

o _WLZ(_Z( X 2) 1
T TR\ AL/

v = WX W
T H T

Approximate s (for shallow curve)

5= || 1,9 2= [ (1 Jv)o
g L/2(1+ WX 2)d

J
=G )

24\H

2
o

8h
_L 418wz s 8h’_ §92
s~L+24wL)L.~L+3L~L%+3(

Note:
s = deformed length
s, = initial length
The “shallow” assumption implies T=H = constant
T

EZATE

T
AE

T H
=SO+AS:SO(1+A—E)=SO(1+A—E)
) = 5@

+—| = + ==
So(l A L1 >a\H L
WG
+ — —
(1 24\H L

)

AS_ES

So
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3.1.5 Equivalent Tangent Stiffness

o

7

B’

| =

Uy

X
>
T 1k
= agbo u, = ZIO V,, 0X

- Consider Cable AB with initial length L,
- Apply tension T, which results in u,

- \ ing, w, whi ults i iv \ Uy. U, i
Apply transverse loading, w, which results in a “negative” end movement u,. u, isa

function of T.

- The net movement is u; —u, = ug.

Chord Shortening

P

Then

AX
\6 for small 6
AX -

A = Ax—AxcosB = Ax(1- cosB)
62
cosf=1 )

and B=v,,

3 e_z)..A_x 2
A~Ax(2 = 2(V,X)

u, = IA = %Iv,)z(dx

—|=s

=23 (e = (9

Ul—

X

3
0

_ T i(""_LQ)Z
UZ_LO{AE 24\ T
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Perturbation
- Increment T by an amount AT
- Get corresponding change in ug

T+AT 1( WLO)Z
+Aug = L -
e ™ Olls 0{ AE  24\T+AT

For small AT wrt T

oug
AuBza—T AT

oug
duB~a—T dT
dug 1 1 (WLO)2
e i
oT °|AE 24 T3

_ 1 1(wky)?
dUB = LO{A_E-FQT dT

4o dug
fg = tangent flexibility = ——

dT
-1y =
dT = EaduB = kgdug
kg = tangent stiffness

AE/L,

wL 2

1+ 55 ()
12\ T T

Note: kg approaches 'I‘i‘—E as T increases
(0]

Kg =

Write ks = LEq
(0}

E

L2
1+ (P
2T\

Eq = effective modulus =
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Alternate forms (shallow cable)

_ _wlL?2 wL, _oh
Hh=Th = 5= - —2 = 8Lo
T = Ac*
where o* = intial cable stress
So
Eet = E = E
eff — 2 2
120*\L, 30*\L
and
T e Ac*
= = Ao
8(h/L,)
wL
A = —
cable 80'*(h/Lo)
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3.1.6 Inclined Shallow Cable

L L, = Lcosg

A

k:[

Eeff

Eerr =

Evaluation of w, for self-weight

w,ds ds

w, = unit weight per unit length of center line

/wadscoscp

W, = W,CosQ
Then w,L = (wycos@)L = w,(cospL) = w,L,
E

CCyl
2 T/\T

Eerr =
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3.2 Modeling of beam with single cable using an equivalent spring

Example #1: Cantilever beam with single cable
Reaction at A due to wy

EEEEEEEEED v, - w2

2
Y Deflection at B due to wy

|
A B TV _ wdL?
Vg =

8EI
T
\ Reactionat Adueto T

y 0 — Ta

7 ’ - M, = TsinbL
A B Deflection at B due to T
L ,. = TsinbL®
B 3El

7

eC
For small vg
€. = spring extension

€. = VgSnb

F. = incremental force in cable
F

¢ = Ke&, = Ksinbvg
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c Tchine = k Sin“Bvg

' ~ -
F.cosb = k.sinBcosbvy

for pretensioned cable

k., = ACE
C Lc eff
E
E =
et 1 AE(WnL)Z
1+ == =
12T\NT
Non-Linear Spring Model
Y
W
K eq = k.sin%6 = k*

This model is used to determine the “incremental” forces due to line loading.

IWustration
P
. '
A B> .
M, K
L Z
Deflection at B
pL3 F L3
VB = VBP+VBS = ﬁ_ 3SE|
(P—F)L3 Sy = (P—k*VB)L3
3El B 3El
3El ., _
VB(F +k ) =P
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Moment Reaction at A

Ma

Ma

Ma

= PLI1
|_3
= PL1-
1+

(PL—K*vgl) = PL(l -

k*

EE

+ k*

1

3EI 1

L3k

*

P

2

Note: Inclusion of cable reduces the negative moment at the support and also the
deflection at the end point. This effect depends on the relative stiffness of the beam

vs the cable.

So, for

k*
k*

I

I

= PL

M, = PL(1-a)
q = 1

1+£i

L3 k*

a = 0 and M,

a =1and M,
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Example #2

Case a

'SREARERRRA L
|

7 L
wl
2
wL2/8
Case b
| " |
F
7 L/2 L/2
F
2 +
FL

SE

J + ‘\ Positive Shear
Shear v/

M M
( + >Positive Moment

Moment

7.
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Case c

RERAREAREREE

PR R

2 2 2 2
_ W_L__lj _wx2
M‘(z 2)X 772
F wL
= - ———4
V 5" WX
Let
F = a(wL)
Then
wL WX?2
M = 2(1—0()x— >

V = W7L(1—0()+wx
M ax OCcurs at x such that V(x*) = 0
L
* = = _
X 2(1 a)

2
M, = M* = 2=—(1-0)?2

max 8

M,y Occurs at x = IE

2 2
M. = FL_wL? _ "%(20(—1)

min 4 8
Optimum Case
IM*| = [M(L/2)|
(1-a)2 = 2a-1
a=2+./2
For a <1 (x* must be positive)
a =2-./2 =058

_wlLz2
M|peak = ?(0.172)
L
* = =
X 0.4142
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Case ¢ (moment balanced)
M*

" N

M*

Suppose F is a spring resultant

EEEEEEEEER D
| |

7 K 7
L/2 L/2

& = deflection at x = L/2 (+ +ve)

O = Q,+9d
5 = S5wL4
W T 384El
5 = FSLS _ kéL3
s T T48ElI ~  48El
5 = SwL4  KkdL3
384El 48El
5 = 2wl 1
8 | 48El ,
|_3

Then

S 1
F = 0k = wL= = awlL
8{48E| +J

L3
Express k in terms of o
48EI 1
kK= —]/—| —/—

8a

o == - k = o Rigid Support

[eed )&

o =0 - k = 0 No Support

For optimal design a = 0.586
_48El 1 _ _ _El
Kopt = 13 To67—1 '*ops
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3.3 Modeling of beam with multiple cables using a beam on elastic foundation model
A beam on many springs can be modelled as a beam on an elastic foundation. A simple
analytic solution exists for “constant” foundation stiffness. This solution is useful for
preliminary design.

3.3.1 Governing equations

Y, v
bA V+ AV A
M+ AM
I | (gt
v "X, u
AX
For small rotations
ZFY =-V+V+AV+bAx = 0
AV
—_— 4 =
A b=20
dv .
— 4 =
dx b=20 (i)
and
ZMO = VAX+M+AM-M =0
AM
—_ 4 V =
AX 0
dM ..
X 0 (ii)
From beam theory
- -V
y - V’x B - DT
- M
B’x - DB
Neglecting transverse shear deformation (ie y = 0)
V,, = B
and
B’x = V’xx
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Then

_ M
Vixx D_B
M = DBV’xx
From (ii)
dM
-V = dx Mx
2
dM
2 ? Mxx
replacing into (i)
2
_d_|\2/| +b=0
dx
4

—d—XZ(DBV,XX) +b=0

Boundary conditions

v or V prescribed at each end
and

B or M prescribed at each end

3.3.2 Winkler Formulation Model

Winkler’s hypothesis assumes the restraining force b at point x is in part a function of
the displacement at x.

?V(X)

i — ] — b,(x) = —kV(X)

dx
This relation is the limiting form when there are many closely-spaced uncoupled
springs supporting the beam

> Wk*
7
k)
For k* and s constant
k*
ke = —
S
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Then
b=-kyv+b

where b = some prescribed loading

In this case the governing equation takes the form
2
d
dx
Note: Boundary conditions have the same form and do not depend on the nature of the
restraining foundation stiffness.

)+kyv = b

XX

3.3.3 Solution with Dy and foundation stiffness constant
Dg = constant
ks = constant

K _
dv, 5, _ b
dx4 Dg Dg

Define
mh= X

DB

Solution has the form

V = Vyar + €7 X(CoSiNAX + C,C08AX) + € *(C5sinAx + C,CoSAX)

where C,;, C,, C5,and C, are integration constants.

Particular solution

b = constant

\Y; =
art
p ks

Characteristic length

A . .
e " decays with increasing x

for Ax=3 e =0

For example

e = 0.0495
e = 0.0183

Define L, as the “characteristic” length
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K, 1/4
4Dy
Then, for x>L,, the e™ terms can be ignored.

Also, if x>L,

V = Voar(X) + €%(Cy8nAx+ C,c0sAx)

Define
SNAX = @
COSAX = @,
COSAX + SINAX = @5
COSAX—SINAX = @,
Then

V(X) = Vpart(X)
¢C3+9,Cy = —e)\;(”L

C; and C, are evaluated using the B.C.sat x = L
V(L) =Vpar(L)

0C3+ 9,Cy = AL (i)
€

Also

Vix = Vig(part) T C3A(COSAX + SINAX) + C,4A (COSA X — SINAX)
At x = L

V(L) =V (L
GG+ oAC, = T ) (i)
€

From (i) and (ii) it can be deduced that C; and C, have a e factor. Therefore, the
C; and C, terms can be neglected for 0<x<L-L,

Therefore, the general solution can be approximated as

0<x<sl, v=y, +e‘AX(Clsin)\x+C2cos)\x)

p

LpsxsL-L, v=v,

L-LysxsL v=v +eAX(CSSin)\x+C4cos)\x)

p
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End Zone 1 Interior Zone 2 End Zone 3
| (o |
/

Ly Ly
—X L

The solution then consists of 2 end zone solutions and an interior zone solution when
the member length is greater than 2L,

o) o2

S
3.3.4 Expansion of Solution Near x = 0

—AX .
v=v,+e "(C;sinAx + C,CosAx)

Vi = B = Vg, + Ci{Ae " (coshx—sinAx)} +C,{ e (~ coshx — sinAx)}

Vixx = Bix = Vo C,{A2e™(=2cosAx)} +C,{ A% ™ (2sinAx)}
M = DgViy
Visox = Vo C/ 2)\3e_AX(cos)\x +SiNAX)} + C{ 2)\3e_AX(cos)\x— SiNAX)}
V= _DBV’xxx
Set
P, = €*(cosAx + SinAx)
P, = € *sinAx
Py = € %(CosAX— SINAX)
Y, = € *coshx
Then
VvV = Vp+C1L|J2+C2L|J4
B = Vo * CiAW - Coy
2 2
V’xx = Vp’xx+C1{ —2\ ljJ4} +C2{ 2\ wz}
3 3
V’XXX = Vp’XXX+Cl{ 2\ lIJ]_} +C2{ 2\ qJ3}
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3.3.5 Examples of Loadings and Boundary Conditions

Case 1

b
EENNEENNRY

-
X p

<
1
Ao

Boundary Conditions

Atx =0 v=20
M:O_’V’XX =0
b~ _ __b
2\2C, =0-C, =0
Then
vV = 9(1—e—)\xcos)\x) = 9(1—llJ4)
kS ks
M — E _I2\2a-AXq = —2—6 2
D, kS( 2A2eXsin)Xx) ks)\ W,

Maximum value of Mg at Ax(J0.8 - by 00.322
max

M _ _2b,, _ 038
b =0 ex=3

max

Maximum value of v at Ax024 - W,  0-0.067
max
_b _ b _24
v o= kS(1+O.067) = 1.067k @x = 5=

max
S
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Case 2 - Infinitely long beam with concentrated force at center

I

Use symmetry at C to model as

Boundary Conditions

Atx =0 V:—gHDBv,XXX:g
B=v,=0
So
and
P P PA
= 3 = — = = —_— =
Vioaly = ANCLH C) = 550 - €= G 8DgA3 2K

The solution is
PA
vV = Z—ks(llJz +,)

M _ PA3 _P
D,k ramM= Vs

V = Dg(Cy{2A %Wy} +Cy{2n%g) = —DB(%) (47%0,)

Maximum valueof M at x = 0

_ Pa3 _ P
Mlmax =~ Ke Dg = AN
Maximum value of V at x = 0
V|max = %
S
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3.4 Design procedures for cable/beam systems

3.4.1 Strength-Based Design
T

0

¢WdAL

AL

Tsnd = wyAL
Set g, = allowable stress for dead weight
o4 = fo,
f0.4t0 0.5
Determine area of cable
iT = Wd_AL

A= = NG
04  04sin

(o

Resulting Stiffness

AL = cable spacing

‘T
Equivalent vertical spring K
% -~ L Y
| |

AL
1 1
k. = stiffness of cable
K, = k.sin°@
_ AE*
ke = 3
where
E* = Ey = E*(T)
Then
* W AL E*
K, = 2="sin’g = ~——Esing
L o4 L
Define k,* = K, /AL = distributed stiffness
. _ Erwy 5
= sin
K o4l
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Harp Cable Arrangement - 6 = constant

X
X = Lcos® - L = —
Y L cosh
WdAL
. - = constant
X o4SN6
. E*Wd 0sn0
X) = cosBsin
00 = 5

Note
- Stiffness decreases rapidly with distance x from the tower

- k¥ at x = 0 is . Therefore, need to modify arrangement in this region

Fan Cable Arrangement - H = constant

L = {H2+X2} 1/2
H sng = o cosf = % tang = O
L L X
=] k() = E*WdH _ _ E*wyH
LL  g4l?
. B E*wy H B E*wy 1
k(%) = 21 y2y 2
04 (H%+x9) Hoy (x)
1+ =
H
1/2
w AL 2
o= e @
O4 H
Tower Geometry
H Dol = 20 r;ax
where a D1
4
Then
I ewr B ()
H 4a2| (L max/2) (L maX/2)
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3.4.2 Stiffness-Based Design

AL = cable spacing
* = constant

K*, = ALKk*, = 't—Esinze
c
_ (kA AL)L,
E*sin’0
Check for strength
Let Av = movement due to live load
and
AT. = Increment in cable tension due to
live load
Av iv
6/ %
AT, = kAe,
A Ae, = Avsin®
AE*. . k* AL
AT, = ( sme)Av = ( . )Av
L. sin6
T, = total tension in cable = T_+AT,
Wa AL
T, = ———
¢ asing

_ AL [Wq _ AL
T, = ﬁ){? +k*VAv} = Si_ne{wdead+wlive}

Harp Cable Arrangement - 6 = constant

X
L = —
¢ cosB
A = (k*VAL) X
¢~ E* cos@sin20

Fan Cable Arrangement
H = L.sinB = constant
_ (k" AL)LE  (k* AL)(H2 4 x2)3/2

c E* H2 E* H2
3/2
(k* ,AL) %\ 2
A= ()
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