1.571 Structural Analysis and Control
Prof. Connor
Section 1: Straight Members with Planar Loading

Governing Equations for Linear Behavior

1.1 Notation

AY’ v

<

AN
N

> >
X, u
a Internal Forces
1.1.2 Deformation - Displacement Relations
B
Yy a
a V: a’
______ _
| b
] Displacements (u, v, B)
Assume Bis small
Longitudinal strain at location y:
0
€ = __
(y) = 52u(y)
For small 3
u(y) =u(0) -yB
v(y) =v(0)
Then
E(Y) = Uy —YB.y =gt gy
g, = U, = stretching strain
&, = —yB,, = bending strain
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Shear Strain

y = decrease in angle between linesaand b

y=6-p
_av _

9~&—V,X
y=v,—B

1.3 Force - Deformation Relations

o =Ee
I = Gy} stress strain relations for linear elastic material
T
? Vv
—>0 M
‘\ »F
X
F= IodA
M = I-yodA
Vo= ITdA

Consider initial strain for longitudinal actions
EgtE, = €t E, = &

where
g, = strain due to stress
g, = Initial strain
gr = total strain = €, +¢,
Then
- -1
€& = E7—& = g0
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0 = E(e;+¢g,) = E(g,+¢g,—¢,)
= E(Uix—YBix — &)
0 F = [odA
F = [E(Uy—YBy—€o)dA
F = u,[EdA+B,,[-yEdA + [-g,EdA
Also
M = I-yodA

M = j-yE(u,X—yB,x—eo)dA

M = u,[-yEdA + B,XIyZEdA + [ye,EdA
If one locates the X-axis such that

ijdA =0
the equations uncouple to give:

F = u,[EdA+[-g,EdA

M = B, [y°EdA + [ye,EdA

Define
Dg = IEdA = stretching rigidity
Dg = ijEdA = bending rigidity
Fo = -[e,EdA
M, = [ye,EdA

Then
F = Dgu,, +F,

M = DgB,, + M,

Consider no inital shear strain
T = Gy = G(v,,—B)

V = ijdA = jG(v,X—B)dA
V = (v,X—B)deA
Define

D; = IGdA = transverse shear rigidity
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then

V = Dq(v,,—B)
1.4 Force Equilibrium Equations
V+ AV
M {-AM
- :
- »— s
F \ F+AF  b,AX
mAX

V
T byAx

Consider the rate of change of the internal force quantities over an interval Ax
SF = -F+F+AF+bAx = 0
AF +Db,Ax = 0

AF
= +
AX b,

SF, = -V+V+AV+b Ax = 0

=0

AV + byAX =0

AV
4 =
Ax b, =0
2

M, = -M+M+AM+mAx—byATX+VAx =0

2
AM + mAX + VAx—byATX =0

AM AX
—+m+V->b,— =
AX by 2 0
Let Ax - 0 (i.e. Ax - dx)
oF
s =
3 b, =0
ov
s =
3 by 0
oM +V+m =0
0X
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1.5 Summary of Formulation

Equations “uncouple” into 2 sets of equations; one set for “axial” loading and the
other set for “transverse” loading.

Axial (Stretching)

F.,tb, =0
F = F,+Dgu,,

Boundary Condition
F or u prescribed at each end

Transverse (Bending)
Vixtb, =0

M, +V+m =20

M = DgB,, + M,

V = D¢(v,,—B)

Boundary Conditions

M or B prescribed at each end

and
V or v prescribed at each end

Note: These equations uncouple for two reasons

1. The location of the X-axis was selected to eliminate the coupling term

ijdA

2. The longitudinal axis is straight and the rotation of the cross-sections is
considered to be small. This simplification does not apply when:
i - the X -axis is curved (see Section 2)
ii - the rotation, (3, can not be considered small, creating
geometric non-linearity (see Section 4)
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1.6 Fundamental Solution - Stretching Problem

b

% e e -
. T
L
L
>
Governing Equations:
oF .
% +b, =0 (i)
_ ou "
F=F+ Ds& (i)
Boundary Conditions
F|B = l_:B
Ul = Up
From (i)
F(x) = -[bdx+C,
F()[ = -(Jbydx) +C; = Fg
0 C; = Fg+([bydx),
Then
F(x) = -jbxdx+(jbxdx)L+ﬁB
which can be written as
L _
F(x) = j b, dx + Fg
X
Note: you could also obtain this result by inspection:
b
> e _
F(x) Fg
- —
X B
——» L
>

L _
F(x) = [ bydx+Fg
X
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From (ii)

where u,(x) = particular solution due to b, and F,,.

where

FFo
Ds
F-F
u(x) :I S°dx+C2
F-F,
Uy = G D, dx)o+C2

F-F

- UA_G Ds °dx)

() = [ =2
U(x) = X+ U
0 DS A

O
N
|

0

E
u(x) = uA+f;D—idx+up(x)

FBX
u(x) = u,+ D_s + Uy (X)

_ FgL
Ug = uA+D_S+uBo
Ug o = Up(L)
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1.7 Fundamental Solution: Bending Problem
\_/A \_/B, Vg
£

( Mg, Bg
N %’* B >

V(x)
M(x)< i

Vg, Vg
T >MB’ BB

B
L—x
Internal Forces
V(X) = \_/B
M(x) = Mg+ Vg(L—x)
Governing Equations for Displacement
M—M,
M:DBB’X-I_MO_’ B’X = D
B
— _ V
V= DT(V’X_B) — V’X = B+ D—
T
Integration leads to:
MBX \_/B X2
B0 = Bp+ o+ po(Li—5) + B0
I\_/IBL \_/B |_2
= =Bt —+ ==+
B(L) BB BA DB DB 2 BB,O

Mgx® Va7, x° Vv
v(x) = vA+[3AL+D—BXE+—B( X——X—3)+D—Bx+vo(x)
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1.8 Particular Solutions

Set Bi o = end rotation at i due to span load

Vi o = end displacement at i due to span load
Then

Bi = BietBio

Vi = VietVio
where

Bi ¢ = end rotation at i due to end actions

Vi ¢ = end displacement at i due to end actions

Concentrated Moment

=
—

_ M*a
BB,O - DB

2
M*a”  M*a
= + G —
Ve = 5p, T2, 0@

Concentrated Force

A" b
A
% _ . B
L L
oo = B2

_ P*a_P*a’ p*a’

= + L —
Veo = 5 *3p, T 2D, (-7
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Distributed Loading

Y
/ B
%’* -

L dx L

A
Replace P* with bdx and integrate from x = 0to x = L

_ X
Bgo = OZ_DBbdX

L x L 3 L 2
v = | —bhdx+| =—bdx+ | —bdx(L—x
50 IODT IO3DB IOZDB (£

for b constant (ie uniformly distributed loading)

g, = b
B.o ™ 6D

B
S T g
B.o "~ 2D; 8Dy
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1.9 Summary

B = BB,0+D_B+D_E+BA

These equations can be written as

L
DS ° ° _
Ug Ug o FB| 100 [Ua
- N L
VB VB,O 3DB DT 2DB VB 0 l L VA
Be)  [Bs.o 2 Mg| 00 1]|B,
s L1
Rigid body transformation from A to B
Also
Fa = Fao—Fs
Va = Vao—Vg
MA = I\_/IA,O_MB_LVB
Fa Fa o 100l Fs
VA VA,O —1010 VB
M MA,O OL1 M
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1.10 Matrix Formulation - Strai ght Members
Define:

Ug
Ug = |vg| Displacement Matrix

™

B
Fg
Eg = |Vg| End Action Matrix
Mg
General Force Displacemnt Relation

Express displacement at B as:
Ug = Ug o *fFg+ TpgUa

Ug o: Due to applied loading

fyFg: Due to forces at B | Based on cantilever model
T,gU,: Effect of motion at A

Interpret
fy = Member flexibility matrix

T,g = Rigid body transformation from A to B

For the prismatic case

- .
> 0 0

¢ = 1> L L2
=] 0 355 o
3D, D; 2Dg

0 L1

1.571 Structural Analysis and Control

Section 1
Prof Connor

Page 12 of 17



Force Displacement Relations
Define kg = f;l = Member stiffness matrix

Start with

Solve for Fy

B , 0

EB = l—(BuB_kBIABuA_l—(BuB,o
Define

EB i = _L(BUB,O
Then

Next, determine E,

_ T

Fao = Fao—TasFs

T T

Fpo = (-Taske)ug + (TagksTag)ua + Fp ;

where
_ T

EA, i~ EA, 0 _IABEB, i

Note F, ;, and F ; are the initial end actions with no end displacements

Finally, rewrite as

Notice that there are two fundamental matrices: Kg and Tag
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Matrices for Prismatic Case

Ug Vg Bs Un Va Ba
DS DS
F ) _
5 3 0 0 3 0 0
B 3 2 3 2
L L L L
B
L2 L L2 L
DS DS
F _ _
A 3 0 0 i 0 0
Va 0 3 2 0 3 2
L L L L
A
L L L L
L - 12Dg D+, = Dg
L°D; (1+a)
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1.11 Transformation Relations

Rigid Body Displacement Transformation

(JOB:(T)A

Ug = Up
Vg = Vp t W4L +in two dimensions

Wg = Wy

Ug 100||Ya

Vgl = |01L||va
Wy 001 Wy
Ug = Tagla

Statically Equivalent Force Transformation

Translate force system acting at B to point A

Pg
Ba B
Fag ~ Ay

A

M

I3A = IﬁB

F, = F, . —T.sF

A =~ Ba o0~ L1aBEB

Section 1
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Coordinate Transformation

y' A Y
X’
5 X
zZ,Z
aX aX
a= a =
a a, a a,
a, a,
a' =

Ra
cosO sinB 0
sme cose 0

The inverse is
cos® = cos(-9)
sin@ = —sin(-8) L R = g7
' = R(-0)
Take
(x,y,2) = Global frame
(x',y',2") = Local frame

E(l) - B(gl)E(g)

RO = R

Given k in local frame (k(')) transform to global frame
F(I) k(l) M _ k(I)R(gI) (@

|
E(g) - B('Q)E(l) - B(lg)k()B(gl)u(g)

If
F@ = (@,
Then
K@ = g9 Mg _ penyT Opan
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1.12 Structural Stiffness Matrix assembly

9 _ 9 0,,9 9,0
Eg = kggUg + Kgalp + Eg

T
9 _ 9 9,,9 0,9
Ea = (kKga) Ug + KaaUp *+ B4

F!=R'F

Use direct stiffness method to generate the system equations referred to the global
frame.

Take B as the positive end and A as the negative end.
B - n+
A - n-
for member n

Write system equation as

¢ = P +KU

Work with the partitioned form of system stiffness matrix K.
Kgg in n+,n+

Kya 1N N-,N-

kT in n+,n-
RBA ’

T .
Kga 1N N-,n+
with
Eg ; inn+ of P,
Ea i inn-of P,
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