1.571 Structural Analysis and Control

Prof. Connor

Section 1: Straight Members with Planar Loading

Governing Equations for Linear Behavior

1.1 Notation

1.1.2 Deformation - Displacement Relations

Displacements (u, v, β)

Assume β is small

Longitudinal strain at location y:

$$\varepsilon(y) = \frac{\partial}{\partial x} u(y)$$

For small β

$$u(y)\approx u(0)-y\beta$$

$$v(y) \approx v(0)$$

Then

$$\varepsilon(y) = u_{,x} - y\beta_{,x} = \varepsilon_a + \varepsilon_b$$

$$\varepsilon_a = u_{,x}$$
 = stretching strain

$$\varepsilon_b = -y\beta_{,x}$$
 = bending strain

Shear Strain

 $\gamma =$ decrease in angle between lines a and b

$$\gamma = \theta - \beta$$

$$\theta \approx \frac{dv}{dx} = v,_x$$

$$\gamma = v_{,x} - \beta$$

1.3 Force - Deformation Relations

 $\left. egin{array}{l} \sigma = E \epsilon \\ \tau = G \gamma \end{array} \right\}$ stress strain relations for linear elastic material

$$F = \int \sigma dA$$

$$M = \int -y \sigma dA$$

$$V = \int \tau dA$$

Consider initial strain for longitudinal actions

$$\varepsilon_{\sigma} + \varepsilon_{o} = \varepsilon_{a} + \varepsilon_{b} = \varepsilon_{T}$$

where

 $\varepsilon_{\sigma} = \text{strain due to stress}$

 ε_o = initial strain

 $\varepsilon_T = \text{total strain} = \varepsilon_a + \varepsilon_b$

Then

$$\varepsilon_{\sigma} = \varepsilon_{T} - \varepsilon_{o} = \frac{1}{E} \sigma$$

$$\sigma = E(\varepsilon_T + \varepsilon_o) = E(\varepsilon_a + \varepsilon_b - \varepsilon_o)$$
$$= E(u, -y\beta, -\varepsilon_o)$$
$$F = \int \sigma dA$$

$$F = \int E(u_{,x} - y\beta_{,x} - \varepsilon_o) dA$$

$$F = u,_x \int E dA + \beta,_x \int -y E dA + \int -\varepsilon_o E dA$$

Also

$$M = \int -y \sigma dA$$

$$M = \int -y E(u, -y \beta, -\varepsilon_o) dA$$

$$M = u, \int -y E dA + \beta, \int y^2 E dA + \int y \varepsilon_o E dA$$

If one locates the X-axis such that

$$\int yEdA = 0$$

the equations uncouple to give:

$$F = u,_x \int E dA + \int -\varepsilon_o E dA$$
$$M = \beta,_x \int y^2 E dA + \int y \varepsilon_o E dA$$

Define

$$D_S = \int E dA = \text{stretching rigidity}$$

$$D_B = \int y^2 E dA = \text{bending rigidity}$$

$$F_o = -\int \varepsilon_o E dA$$

$$M_o = \int y \varepsilon_o E dA$$

Then

$$F = D_S u_{,x} + F_o$$
$$M = D_B \beta_{,x} + M_o$$

Consider no inital shear strain

$$\tau = G\gamma = G(v_{,x} - \beta)$$

$$V = \int G\gamma dA = \int G(v_{,x} - \beta) dA$$

$$V = (v_{,x} - \beta) \int G dA$$

Define

$$D_T = \int G dA$$
 = transverse shear rigidity

then

$$V = D_T(v_{,x} - \beta)$$

1.4 Force Equilibrium Equations

Consider the rate of change of the internal force quantities over an interval Δx

$$\sum F_x = -F + F + \Delta F + b_x \Delta x = 0$$

$$\Delta F + b_x \Delta x = 0$$

$$\frac{\Delta F}{\Delta x} + b_x = 0$$

$$\sum F_y = -V + V + \Delta V + b_y \Delta x = 0$$

$$\Delta V + b_y \Delta x = 0$$

$$\frac{\Delta V}{\Delta x} + b_y = 0$$

$$\sum M_c = -M + M + \Delta M + m \Delta x - b_y \frac{\Delta x^2}{2} + V \Delta x = 0$$

$$\Delta M + m \Delta x + V \Delta x - b_y \frac{\Delta x^2}{2} = 0$$

$$\frac{\Delta M}{\Delta x} + m + V - b_y \frac{\Delta x}{2} = 0$$

Let $\Delta x \rightarrow 0$ (i. e. $\Delta x \rightarrow dx$)

$$\frac{\partial F}{\partial x} + b_x = 0$$

$$\frac{\partial V}{\partial x} + b_y = 0$$

$$\frac{\partial M}{\partial x} + V + m = 0$$

1.5 Summary of Formulation

Equations "uncouple" into 2 sets of equations; one set for "axial" loading and the other set for "transverse" loading.

Axial (Stretching)

$$F_{,x} + b_x = 0$$

 $F = F_o + D_S u_{,x}$
Boundary Condition
For u prescribed at each end

Transverse (Bending)

$$V_{,x} + b_y = 0$$

 $M_{,x} + V + m = 0$
 $M = D_B \beta_{,x} + M_o$
 $V = D_T (v_{,x} - \beta)$
Boundary Conditions
M or β prescribed at each end and
V or v prescribed at each end

Note: These equations uncouple for two reasons

- 1. The location of the X-axis was selected to eliminate the coupling term $\int yEdA$
- 2. The longitudinal axis is straight and the rotation of the cross-sections is considered to be small. This simplification does not apply when:
 - i the X-axis is curved (see Section 2)
 - ii the rotation, β , can not be considered small, creating geometric non-linearity (see Section 4)

1.6 Fundamental Solution - Stretching Problem

Governing Equations:

$$\frac{\partial F}{\partial x} + b_x = 0 (i)$$

$$F = F_o + D_S \frac{\partial u}{\partial x}$$
 (ii)

Boundary Conditions

$$F|_{B} = \overline{F}_{B}$$

$$u|_{A} = u_{A}$$

From (i)

$$F(x) = -\int b_x dx + C_1$$

$$F(x)|_L = -\left(\int b_x dx\right)_L + C_1 = \overline{F}_B$$

$$C_1 = \overline{F}_B + \left(\int b_x dx\right)_L$$

Then

$$F(x) = -\int b_x dx + (\int b_x dx)_L + \overline{F}_B$$

which can be written as

$$F(x) = \int_{x}^{L} b_{x} dx + \bar{F}_{B}$$

Note: you could also obtain this result by inspection:

From (ii)

$$\frac{F - F_o}{D_S} = u_{,x}$$

$$u(x) = \int \frac{F - F_o}{D_S} dx + C_2$$

$$u_A = \left(\int \frac{F - F_o}{D_S} dx\right)_0 + C_2$$

$$C_2 = u_A - \left(\int \frac{F - F_o}{D_S} dx\right)_0$$

$$u(x) = \int_0^x \frac{F - F_o}{D_S} dx + u_A$$

$$u(x) = u_A + \int_0^x \frac{\overline{F}_B}{D_S} dx + u_p(x)$$

$$u(x) = u_A + \frac{\overline{F}_B x}{D_S} + u_p(x)$$

where $u_p(x) = \text{particular solution due to } b_x \text{ and } F_o$.

$$u_B = u_A + \frac{\overline{F}_B L}{D_S} + u_{B, o}$$

where

$$u_{B,\,o}\,=\,u_p(L)$$

1.7 Fundamental Solution: Bending Problem

Internal Forces

$$V(x) = \overline{V}_B$$

$$M(x) = \overline{M}_B + \overline{V}_B(L-x)$$

Governing Equations for Displacement

$$M = D_B \beta_{,x} + M_o \rightarrow \beta_{,x} = \frac{M - M_o}{D_B}$$
$$V = D_T(v_{,x} - \beta) \rightarrow v_{,x} = \beta + \frac{V}{D_T}$$

Integration leads to:

$$\beta(x) = \beta_A + \frac{\overline{M}_B x}{D_B} + \frac{\overline{V}_B}{D_B} \left(L x - \frac{x^2}{2} \right) + \beta_o(x)$$

$$\beta(L) = \beta_B = \beta_A + \frac{\overline{M}_B L}{D_B} + \frac{\overline{V}_B L^2}{D_B 2} + \beta_{B,o}$$

$$v(x) = v_A + \beta_A L + \frac{\overline{M}_B x^2}{D_B 2} + \frac{\overline{V}_B}{D_B} \left(L \frac{x^2}{2} - \frac{x^3}{6} \right) + \frac{\overline{V}_B}{D_T} x + v_o(x)$$

$$v(L) = v_B = v_A + \beta_A L + \frac{\overline{M}_B L^2}{D_B 2} + \frac{\overline{V}_B L^3}{D_B 2} + \frac{\overline{V}_B L}{D_T} L + v_{B,o}$$

1.8 Particular Solutions

Set $\beta_{i, o} = \text{end rotation at i due to span load}$

 $v_{i,o} = \text{end displacement at i due to span load}$

Then

$$\beta_i = \beta_{i, e} + \beta_{i, o}$$

$$v_i = v_{i, e} + v_{i, o}$$

where

 $\beta_{i,e}$ = end rotation at i due to end actions

 $v_{i,e} =$ end displacement at i due to end actions

Concentrated Moment

$$\beta_{B, o} = \frac{M^*a}{D_B}$$

$$v_{B, o} = \frac{M^*a^2}{2D_B} + \frac{M^*a}{2D_B}(L-a)$$

Concentrated Force

$$\beta_{B, o} = \frac{P*a^2}{2D_B}$$

$$v_{B,o} = \frac{P^*a}{D_T} + \frac{P^*a^3}{3D_B} + \frac{P^*a^2}{2D_B}(L-a)$$

Distributed Loading

Replace P^* with bdx and integrate from x = 0 to x = L

$$\beta_{B,o} = \int_0^L \frac{x^2}{2D_B} b dx$$

$$v_{B, o} = \int_{0}^{L} \frac{x}{D_{T}} b dx + \int_{0}^{L} \frac{x^{3}}{3D_{B}} b dx + \int_{0}^{L} \frac{x^{2}}{2D_{B}} b dx (L-x)$$

for b constant (ie uniformly distributed loading)

$$\beta_{B,o} = \frac{bL^3}{6D_B}$$

$$v_{B,o} = \frac{bL^2}{2D_T} + \frac{bL^4}{8D_B}$$

1.9 Summary

$$u_{B} = u_{B,o} + \frac{\bar{F}_{B}L}{D_{S}} + u_{A}$$

$$v_{B} = v_{B,o} + \frac{\bar{M}_{B}L^{2}}{D_{B}2} + \frac{\bar{V}_{B}L^{3}}{D_{B}2} + \frac{\bar{V}_{B}L}{D_{T}} + v_{A} + \beta_{A}L$$

$$\beta_{B} = \beta_{B,o} + \frac{\bar{M}_{B}L}{D_{B}} + \frac{\bar{V}_{B}L^{2}}{D_{B}2} + \beta_{A}$$

These equations can be written as

$$\begin{bmatrix} u_{B} \\ v_{B} \\ \beta_{B} \end{bmatrix} = \begin{bmatrix} u_{B,o} \\ v_{B,o} \\ \beta_{B,o} \end{bmatrix} + \begin{bmatrix} \frac{L}{D_{S}} & 0 & 0 \\ 0 & \frac{L^{3}}{3D_{B}} + \frac{L}{D_{T}} & \frac{L^{2}}{2D_{B}} \\ 0 & \frac{L^{2}}{2D_{B}} & \frac{1}{D_{B}} \end{bmatrix} \begin{bmatrix} \bar{F}_{B} \\ \bar{V}_{B} \\ \bar{M}_{B} \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & L \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{A} \\ v_{A} \\ \beta_{A} \end{bmatrix}$$

Rigid body transformation from A to B

Also

$$\begin{split} \overline{F}_A &= \overline{F}_{A,o} - \overline{F}_B \\ \overline{V}_A &= \overline{V}_{A,o} - \overline{V}_B \\ \overline{M}_A &= \overline{M}_{A,o} - \overline{M}_B - L \overline{V}_B \\ \begin{bmatrix} \overline{F}_A \\ \overline{V}_A \\ \overline{M}_A \end{bmatrix} &= \begin{bmatrix} \overline{F}_{A,o} \\ \overline{V}_{A,o} \\ \overline{M}_{A,o} \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & L & 1 \end{bmatrix} \begin{bmatrix} \overline{F}_B \\ \overline{V}_B \\ \overline{M}_B \end{bmatrix} \end{split}$$

1.10 Matrix Formulation - Straight Members

Define:

$$\underline{u}_B = \begin{bmatrix} u_B \\ v_B \\ \beta_B \end{bmatrix}$$
 Displacement Matrix $\begin{bmatrix} \overline{F}_B \end{bmatrix}$

$$\underline{F}_B = egin{bmatrix} \overline{F}_B \\ \overline{V}_B \\ \overline{M}_B \end{bmatrix}$$
 End Action Matrix

General Force Displacemnt Relation

Express displacement at B as:

$$\underline{u}_B = \underline{u}_{B,o} + \underline{f}_B \underline{F}_B + \underline{T}_{AB} \underline{u}_A$$

$$\underbrace{u_{B,\,o}}$$
: Due to applied loading $f_B \underline{F}_B$: Due to forces at B Based on cantilever model $\underline{T}_{AB} \underline{u}_A$: Effect of motion at A

Interpret

 f_B = Member flexibility matrix T_{AB} = Rigid body transformation from A to B

For the prismatic case

$$f_{B} = \begin{bmatrix} \frac{L}{D_{S}} & 0 & 0 \\ 0 & \frac{L^{3}}{3D_{B}} + \frac{L}{D_{T}} & \frac{L^{2}}{2D_{B}} \\ 0 & \frac{L^{2}}{2D_{B}} & \frac{1}{D_{B}} \end{bmatrix}$$

Force Displacement Relations

Define $\underline{k}_B = f_B^{-1}$ = Member stiffness matrix

Start with

$$\underline{u}_B = \underline{u}_{B,o} + f_B \underline{F}_B + \underline{T}_{AB} \underline{u}_A$$

Solve for \underline{F}_{R}

$$f_B F_B = \underline{u}_B - \underline{T}_{AB} \underline{u}_A - \underline{u}_{B,o}$$

$$F_B = \underline{k}_B \underline{u}_B - \underline{k}_B \underline{T}_{AB} \underline{u}_A - \underline{k}_B \underline{u}_{B,o}$$

Define

$$\underline{F}_{B, i} = -\underline{k}_B \underline{u}_{B, o}$$

Then

$$\underline{F}_B = \underline{k}_B \underline{u}_B - \underline{k}_B \underline{T}_{AB} \underline{u}_A + \underline{F}_{B,i}$$

Next, determine \underline{F}_A

$$\underline{F}_{A} = \underline{F}_{A,o} - \underline{T}_{AB}^{T} \underline{F}_{B}$$

$$\underline{F}_{A} = (-\underline{T}_{AB}^{T} \underline{k}_{B}) \underline{u}_{B} + (\underline{T}_{AB}^{T} \underline{k}_{B} \underline{T}_{AB}) \underline{u}_{A} + \underline{F}_{A,i}$$

where

$$\underline{F}_{A, i} = \underline{F}_{A, o} - \underline{T}_{AB}^T \underline{F}_{B, i}$$

Note $E_{A,\,i}$ and $E_{B,\,i}$ are the initial end actions with no end displacements

Finally, rewrite as

$$\underline{F}_{B} = \underline{k}_{BB}\underline{u}_{B} + \underline{k}_{BA}\underline{u}_{A} + \underline{F}_{B, i}$$

$$\underline{F}_{A} = \underline{k}_{BA}^{T}\underline{u}_{B} + \underline{k}_{AA}\underline{u}_{A} + \underline{F}_{A, i}$$

Notice that there are two fundamental matrices: \underline{k}_B and \underline{T}_{AB}

Matrices for Prismatic Case

	u_B	v_B	β_B	u_A	v_A	eta_A
F_B	$rac{D_S}{L}$	0	0	$-\frac{D_S}{L}$	0	0
V_B	0	$\frac{12D^*_B}{L^3}$	$\frac{(-6)D^*_B}{L^2}$	0	$\frac{(-12)D^*_B}{L^3}$	$\frac{(-6)D^*_B}{L^2}$
M_B	0	$\frac{(-6)D^*_B}{L^2}$	$\frac{(4+a)D^*_B}{L}$	0	$\frac{6D*_B}{L^2}$	$\frac{(2+a)D*_B}{L}$
F_A	$-\frac{D_S}{L}$	0	0	$rac{D_S}{L}$	0	0
V_A	0	$\frac{(-12)D^*_B}{L^3}$	$\frac{6D^*_B}{L^2}$	0	$\frac{12D^*_B}{L^3}$	$\frac{6D^*_B}{L^2}$
M_A	0	$\frac{(-6)D^*_B}{L^2}$	$\frac{(2+a)D^*_B}{L}$	0	$\frac{6D*_B}{L^2}$	$\frac{(4+a)D*_B}{L}$
		$a = \frac{12D_B}{L^2 D_T}$		$D^*_B = \frac{D_B}{(1+a)}$		

1.11 Transformation Relations

Rigid Body Displacement Transformation

$$\begin{bmatrix} u_B \\ v_B \\ \omega_B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & L \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_A \\ v_A \\ \omega_A \end{bmatrix}$$
$$\vec{u}_B = T_{AB} \vec{u}_A$$

Statically Equivalent Force Transformation

Translate force system acting at B to point A

Coordinate Transformation

$$\underline{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$

$$\underline{a}' = \begin{vmatrix} a_{x'} \\ a_{y'} \\ a_{z'} \end{vmatrix}$$

$$a' = Ra$$

$$\underline{R} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The inverse is

$$\begin{vmatrix}
\cos \theta &= \cos(-\theta) \\
\sin \theta &= -\sin(-\theta) \\
\underline{R}^{-1} &= \underline{R}(-\theta)
\end{vmatrix} \underline{R}^{T} = \underline{R}^{-1}$$

Take

$$(x, y, z)$$
 = Global frame
 (x', y', z') = Local frame

$$\underline{F}^{(l)} = \underline{R}^{(gl)}\underline{F}^{(g)}$$
$$\underline{R}^{(gl)} = \underline{R}$$

Given \underline{k} in local frame ($\underline{k}^{(l)}$), transform to global frame

$$\underline{F}^{(l)} = \underline{k}^{(l)} \underline{u}^{(l)} = \underline{k}^{(l)} \underline{R}^{(gl)} \underline{u}^{(g)}
\underline{F}^{(g)} = \underline{R}^{(lg)} \underline{F}^{(l)} = \underline{R}^{(lg)} \underline{k}^{(l)} \underline{R}^{(gl)} \underline{u}^{(g)}$$

lf

$$\underline{F}^{(g)} = \underline{k}^{(g)} \underline{u}^{(g)}$$

Then

$$\underline{k}^{(g)} = \underline{R}^{(lg)} \underline{k}^{(l)} \underline{R}^{(gl)} = (\underline{R}^{(gl)})^T \underline{k}^{(l)} \underline{R}^{(gl)}$$

1.12 Structural Stiffness Matrix assembly

$$\begin{split} \underline{F}_{B}^{g} &= \underline{k}_{BB}^{g} \underline{u}_{B}^{g} + \underline{k}_{BA}^{g} \underline{u}_{A}^{g} + \underline{F}_{B,i}^{g} \\ \underline{F}_{A}^{g} &= (\underline{k}_{BA}^{g})^{T} \underline{u}_{B}^{g} + \underline{k}_{AA}^{g} \underline{u}_{A}^{g} + \underline{F}_{A,i}^{g} \\ \underline{F}_{i}^{g} &= \underline{R}^{T} \underline{F}_{i}^{l} \end{split}$$

Use direct stiffness method to generate the system equations referred to the global frame.

Take B as the positive end and A as the negative end.

$$B \rightarrow n+$$

$$A \rightarrow n$$
-

for member n

Write system equation as

$$_{-E} = \underline{P}_I + \underline{K}\underline{U}$$

Work with the partitioned form of system stiffness matrix \underline{K} .

$$\underline{k}_{BB}$$
 in n+,n+

$$\underline{k}_{AA}$$
 in n-,n-

$$\underline{k}_{BA}^{T}$$
 in n+,n-

$$\underline{k}_{BA}^{T}$$
 in n-,n+

with

$$\underline{F}_{B, i}$$
 in n+ of \underline{P}_{I}

$$\underline{F}_{A, i}$$
 in n- of \underline{P}_{I}