Problem Set 5

Problem 5.1

In Problem 4.1 assume P=20 kN. Find and estimate of the lateral displacement.

Problem 5.2

Determine the displacement C experiences. Use a non-linear approach and stop when $\Delta P \leq 0.05P$

Compare the results obtained with a linear approach.

Area = 40 cm^2 E_s=200,000 *MPa*

Problem 5.3

Assuming that all members are initially stressed with a tensile force, T_0 , and their stiffness factors ($\frac{AE}{L}$) are equal to k^* .

Establish the relation between P and u.

Problem 5.4

Consider a 3 span symmetric cable stayed system with a fan arrangement of cables.

- **a)** Estimate the distribution of the required cable areas in the main span corresponding to the following conditions:
 - •Tower Height, $H = 0.2 L_m$
 - •Main Span, *L_m*=600*m*
 - •Segment size, $\Delta L = 15m$
 - •Allowable stress in cable is 640 MPa
 - •Modulus of cable is 190,000 MPa
 - •Applied Loading is a uniform load of 100 kN/m
 - •Maximum displacement is L_m /400
- **b)** Describe the effect that the lateral movement of the tower has on the required cable area.

Problem 5.5

Part A:

Assume the outriggers are infinitely stiff, the beam bending rigidity is constant, and the cables are initially tensioned to a level of T_o .

Suppose a lateral load is applied at point C. Determine an expression for *u* in terms of the structural parameters.

Discuss how would you establish an approximate value for T_o .

Part B:

Describe how would you extend the analysis procedure to deal with the case of 2 outriggers shown.

