MACRO DESIGN MODELS
FOR A SINGLE ROUTE

Outline

1.
2. Bus frequency model

3.

4. Stop/station spacing model

Nigel Wilson

Introduction to analysis approach

Bus size model

1.258J/11.541J/ESD.226J
Spring 2010, Lecture 16




Introduction to Analysis Approach

e Basic approach is to establish an aggregate total cost function
including:
e oOperator cost as f (design parameters)
e user cost as g (design parameters)

 Minimize total cost function to determine optimal design
parameter (s.t. constraints)

Variants include:
« Maximize service quality s.t. budget constraint
e Maximize consumer surplus s.t. budget constraint
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Bus Frequency Model: the Square Root Model

Problem: define bus service frequency on a route as a
function of ridership

Total Cost = operator cost + user cost

Z=coi+boroﬁ
h 2

where  Z = total (operator + user) cost per unit time
¢ = operating cost per unit time
t = round trip time
h = headway — the decision variable to be determined
b = value of unit passenger waiting time

r =ridership per unit time

Minimizing Z w.r.t. i yields :
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Sqguare Root Model (cont’d)

This is the Square Rule with the following implications:

 high frequency is appropriate where
(cost of wait time/cost of operations time) is high

 frequency is proportional to the square root of ridership per
unit time for routes of similar length

Frequency-Ridership Relationship

Frequenc
. y Constant Load

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Capacity

N

Ridership

Nigel Wilson 1.258J3/11.5413/ESD.226J
Spring 2010, Lecture 16



Sqguare Root Model (cont’d)

 Load factor is proportional to the square root of the
product of ridership and route length.

Bus Capacity-Ridership Relationship
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Sqguare Root Model (cont’d)

Critical Assumptions:

bus capacity is never binding

only frequency benefits are wait time savings
ridership #f (frequency)

simple wait time model

budget constraint is not binding

Possible Remedies:

introduce bus capacity constraint

modify objective function

introduce r=f(h) and re-define objective function
modify objective function

Introduce budget constraint
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Bus Frequency Example

If: C $90/bus hour

b = $10/passenger hour
90 mins

r = 1,000 passengers/hour

Then: hepr =11 mins
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Bus Size Model

Problem: define optimal bus size on a route

Assumptions:
 Desired load factor is constant
« Labor cost/bus hour is independent of bus size
 Non-labor costs are proportional to bus size
« Bus dwell time costs per passenger are independent of bus size

Using same notation as before plus:
w = labor cost per bus hour
p = passenger flow past peak load point
k = desired bus load - the decision variable to be determined
Then Z=Wo£+boroé
h 2

k

Now h=— by assumption above
z =P, brk
kK 2p
Minimizing Z w.r.t. k gives: £k, = 2pr;Wt
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Bus Size Model (cont’d)

Result is another square root model, implying that
optimal bus size increases with:

e round trip time

 ratio of labor cost to passenger wait time cost
e peak passenger flow

« concentration of passenger flows

Previous example extended with:

p = 500 pass/hour
w = $40/bus hour
all other parameters as before:

Then:hopT = b5
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Stop/Station Spacing Model

Problem: determine optimal stop or station spacing

Trade-off is between walk access time (which increases with station
spacing), and in-vehicle time (which decreases as station spacing
increases) for the user, and operating cost (which decreases as station
spacing increases)

Define Z = total cost per unit distance along route and per headway
and T, = timelost by vehicle making a stop

C = vehicle operating cost per unit time

S = station/stop spacing - the decision variable to be

determined

N = number of passengers on board vehicle

Y = value of passenger in-vehicle time

D = demand density in passenger per unit route length per

headway
Voec = Value of passenger access time
W = walk speed

C = station/stop cost per headway

Nigel Wilson 1.258J3/11.5413/ESD.226J 10
Spring 2010, Lecture 16




Stop/Station Spacing Model (cont’'d)

T
Z=—S[(C+Nov)+c—s+i0Dovacc
s s 4 w

Minimizing Z w.r.t. s gives:

v

acc

1/2
A
Sopr = |:D i [Cs +7,(c, +NV)]j|

Yet another square root relationship, implying that station/stop
spacing increases with:

walk speed

station/stop cost

time lost per stop

vehicle operating cost

number of passengers on board vehicle
value of in-vehicle time

and decreases with:

demand density
value of access time
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Bus Stop Spacing

U.S. Practice

« 200 m between stops (8 per mile)
 shelters are rare

o |ittle or no schedule information

European Practice

e 320 m between stops (5 per mile)
« named & sheltered

e up to date schedule information
 scheduled time for every stop
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Stop Spacing Tradeoffs

Nigel Wilson

Operator + User Cost

Walking time
Riding time
Operating cost
Ride quality

total extra cost

extra walk time
extrariding time

extra operating cost

Stop spacing (m)
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Walk Access: Block-Level Modeling

@

J A\
N
J A\

N
L

Main Street
with Existing
Stops

Shed Line —>

(b)

VYYYY YYYVYYVYV

Figure by MIT OpenCourseWare.
Spring 2010, Lecture 16

14




Results: MBTA Route 39*

STOPS/MI
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0 0.5 1 O Discrete model optimal stop
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— — MBTA guideline
---- Discrete model optimum

Figure by MIT OpenCourseWare.

AM Peak Inbound results

*Avg walking time up 40 s

*Avg riding time down 110 s
*Running time down 4.2 min
«Save 1, maybe 2 buses

Source: Furth, P.G. and A. B. Rahbee, “Optimal Bus Stop Spacing Using Dynamic Programming and Geographic
Modeling." Transportation Research Record 1731, pp. 15-22, 2000.
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Bus Stop Locations and Policies

« Far-side (vs. Near-side)
 |ess queue interference
e easier pull-in
 fewer ped conflicts
« snowbank problem demands priority in maintenance

« Curb extensions benefit transit, peds, and traffic
(0.9 min/mi speed increase)

e Pull-out priority (it’s the law in some states)

« Reducing dwell time (vehicle design, fare collection,
fare policy)
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