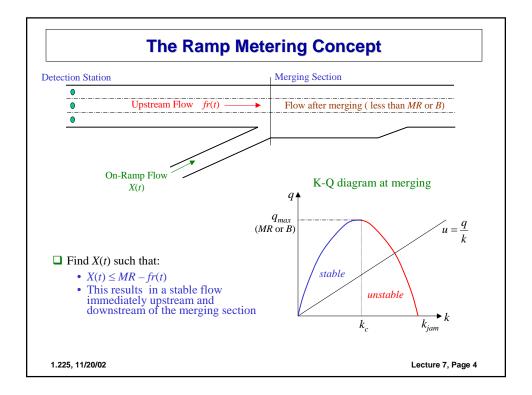
1.225J (ESD 205) Transportation Flow Systems

Lecture 7

Freeway Traffic Control: Pre-timed, Coordinated Ramp Metering


Prof. Ismail Chabini and Prof. Amedeo R. Odoni

Lecture 7 Outline

- ☐ Introduction:
 - Freeway traffic control
 - Ramp metering
- ☐ Pre-timed, coordinated ramp metering (R11, R13)
 - Example
 - LP formulation for the example
 - General LP formulation
- **□** Summary

Freeway Traffic Control

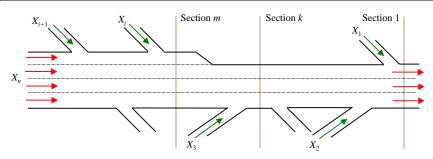
- ☐ Lane control:
 - Variable speed limit signs
 - Keep-lane signs
 - Congestion and incident warnings
 - Environmental condition warnings, such as fog, ice, rain and snow
- ☐ Freeway network control:
 - Variable Message Signs (VMS) for driving information and/or guidance
 - Individual route guidance
- ☐ Two types of freeways: Urban freeways and Intercity freeways
- ☐ Ramp metering is applicable to urban freeways due to:
 - Large number of on and off ramps
 - Many ramp-to-ramp trips
 - Recurrent as well as non-recurrent (usually dynamic) congestion

Ramp Metering: General Aspects

- ☐ Examples of objectives:
 - Preserve freeway capacity
 - Maximize total vehicles served
 - Reduce duration and extent of recurrent congestion
 - React to non-recurrent congestion
- ☐ Implementation: Traffic lights (one car at a time or traffic cycles)
- ☐ Main geographical areas of applications:
 - Europe
 - Asia
 - California and Texas
- ☐ Controllability limitations:
 - Amount of controlled ramps
 - Minimum ramp volumes
 - Ramp length

1,225, 11/20/02

Lecture 7, Page 5

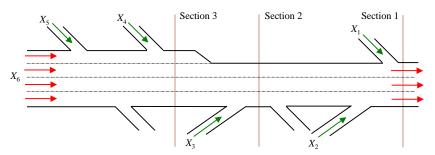

Types of Ramp Metering Methods

- ☐ Types of ramp metering methods:
 - Isolated vs. Coordinated
 - Pre-timed (time-of-day) vs. Traffic responsive
- ☐ Pre-timed (also called fixed-time) ramp metering:
 - Does not need real-time measurements
 - Calculations are done off-line and are based on historic demands
 - Assumes no dynamics, which is valid for sufficiently long roads and time periods only
- ☐ Focus of this lecture: *Pre-timed*, *Coordinated* ramp metering

1.225, 11/20/02

Lecture 7, Page 6

LP Formulation: Notations



■ Notations

- X_j : input volumes to the freeway system (j = 1, 2, ..., n)
- A_{kj} : decimal fraction of vehicles entering at input j which pass through section k (k = 1, 2, ..., m; j = 1, 2, ..., n)
- B_k : capacity of freeway section k (k = 1, 2, ..., m)
- \bullet D_j : hourly demand at input ramp j

1.225, 11/20/02 Lecture 7, Page 7

Pretimed, Coordinated Ramp Metering: Example

□ Input data (6 ramps (n=6), 3 sections (m=3))

	A_{jk}		j					
l			1	2	3	4	5	6
I		1	1.000	1.000	0.949	0.933	0.842	0.519
	\boldsymbol{k}	2			1.000	1.000	0.922	0.619
		3				1.000	0.969	0.777

	1.000	0.909	0.777	1
		-	-	
3	4	5	6	
450	500	825	6800	

k	\boldsymbol{B}_k
1	5900
2	6000
3	6450

1.225, 11/20/02

Lecture 7, Page 8

LP Formulation and Solution: Example

☐ Maximize total vehicles served:

$$X_j \ge 0$$
, $j = 1,2,3,4,5,6$

- \square An optimal solution: $X_1 = 447$, $X_2 = 475$, $X_3 = 450$, $X_4 = 367$, $X_5 = 825$, $X_6 = 6800$
- ☐ Objective function value = 9364 (maximum flow)
- □ Slack variables: $S_1 = 0$, $S_2 = 213$, $S_3 = 0$, $S_4 = 153$, $S_5 = 0$, $S_6 = 0$, $S_7 = 133$, $S_8 = 0$, $S_9 = 0$

1.225, 11/20/02 Lecture 7, Page 9

General LP Formulation

s.t.
$$\sum_{j=1}^{n} A_{kj} X_{j} \le B_{k}$$
, $k = 1, 2, ..., m$ (section capacity constraints) $X_{j} \le D_{j}$, $j = 1, 2, ..., n$ (on - ramp demand constraints)

 $X_j \le D_j$, j = 1,2,...,n (on - ramp demand constraints) $X_j \ge 0$, j = 1,2,...,n (non - negativity constraints)

- Solution method:
 - The above LP can be solved by the Simplex method
 - There are numerous software solvers for LPs (XPRESS-MP, LINDO, CPLEX, EXCEL)
 - The Excel LP Solver may be used for problems of moderate size only

Lecture 7 Summary

- ☐ Introduction:
 - Freeway traffic control
 - Ramp metering
- ☐ Pre-timed, coordinated ramp metering
 - Example
 - LP formulation for the example
 - General LP formulation