1.225J (ESD 205) Transportation Flow Systems

Lecture 6

Introduction to Optimization

Prof. Ismail Chabini and Prof. Amedeo R. Odoni

Lecture 6 Qutline

U Mathematical programs (MPs)

O Formulation of shortest path problems as MPs

O Formulation of U.O. traffic assignment asan MP

U Relationship between U.O. and S.O. traffic assignment
0 Solving S.O. traffic assignment by hand

U Lecture summary
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Optimization: Mathematical Programs

U Generd formulation (n variables, m constraints):
min z(X,, X,,..., X,) ==> Objective function
Subject to (sit.): Gy (X, X550, X)) 2 By
9,(X, %0y X,) 2 b,

O, (X, X500, X)) 2

a (X)) Xpeees X)) - decision variables
a 9; (X, X0 X)) 20 - A constraint
U Notes:

Max f (X11X21---1Xn) = M|nZ(X) = _f (X:I_’X21---1Xn)
9(X, %5, X)) b= —g(X, %50, X)) 2D

(X, Xy X)) =D = (X, Xy, X)) 2 D AN — 9(X;, X500, X)) = —D
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Types of Mathematical Programs (MPs)

ULinear programs (LPs): objective functionislinear, and
congtraints are linear

U Non-linear programs (NLPs): objective function islinear.
(constraints are usually linear. Otherwise, there might be more than
one optimal solution (finding such a solution can be avery time
consuming task))

U If decision variables are further constrained to take integer values, a
linear program is an integer program

U If decision variables are constrained to take 0/1 values. an integer
program isan 0/1 integer program

U If some, but not al, variables are constrained to take integer values: a
linear program is called amixed integer program
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MPs Are Tools for Transportation Analysts

0 Various models and quantitative analysis questionsin transportation
can be formulated as minimization (or maximization) problems:

* Shortest path problems
» Traffic assignment models in congested networks
* Signal setting problems
» Ramp-metering optimization
U Examples of questions related to modeling:

» Formulate a model as a mathematical program (MP) (there might
be more than one model for the same modeling question)

* Study the properties of the model (i.e. does the model possess one
or multiple solutions? Isit easy to find a solution?

* Find a“solution” to the model (One may settle for an approximate
reasonable solution, asit is not aways possible (desirable) to find
an optimal solution in areasonable amount of time)
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How to Solve Mathematical Programs?

U Graphically: This gives you afeel of what is happening
U By hand using a systematic analytical method

0 Use your software such as XpresssMP, GAMES, LINDO, CPLEX,
Excel:

« Software tools are computer implementations of systematic methods

U There are also specialized software for some transportati on applications

» Examples: TRANSCAD and EMME/2 for static traffic assignment
(We have licenses of these software systems in the CTS Computing
lab)
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Shortest Path Problems As An LP: Example

0 We want to find shortest paths from all nodes to Node 5
O Decision variables: |1, if arc(i, j) is used
L) otherwise

Q c

i» (I, ]) € A isthe cost of each arc

Jo=p
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All-to-One Shortest Path Problem As An LP

U Formulation:
min  4x, +3X;3 + X, + 2X55 +
8%y, + 2Xg, + 6Xos + 4X,e
st.  X,+Xz=1
Xog + Xos = Xpp = Xgp =1
Xap + Xgq + X5 — X3 =1
Xgg = Xog = Xgy =1
— X5 — Xg5 — X5 = —4
% =20, (i,j))eA

U Note: congtraints “the decision variables must be integers’ should
have been added. However, it is known theoretically that the above
L P possesses an integer solution, and tools exist toit.
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One-to-One Shortest Path Problem As An LP

U Formulation:

min  4xqo +3X3+ Xog + 2Xo5 +
8X3o + 2X34 + 6X35 + 4Xy5

st.  Xo+X3=1
Xo4 +Xo5— X2 = X32 =0
X32 + X34 + X35 = %13 =0
X45 X4 = X34 =0
— X5 —Xg5 —Xg5 =1

%j 20, (i,]))eA

U Note: we could have added the fact that the decision variables are
either O or 1. However, it is known theoretically that the above LP

possesses a 0-1 solution, and tools exist that provide such solution
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SO Static Traffic Assignment as an MP: Example

min 3t () + %t (%, )+ Xty (%)
st. f*=0q, Demand

flbc + fzbC = Qe

f*>0,f*>0,f°>0 Non - negativity
x=f*+ fzbc

x, = f* Definition of link flows
Xy = fzbc

QImin it (%) + X5, )+ Xt (%) = min [my(x Jobg + [ m, (x, Jo, + [ my (x; )abx,
0 0 0

where ml(x1)=d(xtl;[1xfxl)), rnz(xz)zd(xif(fXZ)), ms(xg)zd(xatsxixa))
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Objective Function For U.O. Traffic Assignment

5E=) (o)

t,(%,)

t,(%)

X5
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t,(X,) =1+2x,
tl(xl) =2+ X

P

Minimum of ( j:tl(w)dw+ j:?tz(w)dw)
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UO & SO Traffic Assignment As MPs: R7 Example

0 minxfti(&)dmxftz(xg)dxz+Tt3(x3)d>g m) minTm(&)dmszm(xg)dxz+Xj3r@(><3)dx3

flac = qac
flbc + fzbc — q)c

st.

£*>0,1*>0,*>0

Xj_ — flac + fzbc
X = flbc
x = fzbc
U U.O.: All used paths have, between

any O-D pair, equal and minimum
travel time
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flac = qac
flbc + fzbc = O

st.

f*>0f*>0,f >0

X1 — flac + fzbc
X = flbc
Xg — fgbc
U SO.: All used paths have,

between any O-D pair, equal and
minimum marginal travel times
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Solving SO Static Traffic Assignment: Examples

ST L2 % N t,(%) =1+ 2
5 =) (0) OL=2 ’ ?
N ki x bie) =2+

1 t(%)=10+x,

t,(x,)=90+ X,

3
2 ts(xs =0
‘ (Gac: A ) = (80.10)
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Solving SO Static Traffic Assignment: Examples

m to(Xo) =1+ 2x
q= (o) @=q tz((XZ))—2+x ’
S Lkl g T e

U UO solutions for three values of g:
» g=1/8: x1=0, x2=q
» g=1/2: x1=0, x2=q
* g=5: x1=3, x2=2
U SO solutions for three values of q:
* m1(x1)=2+2x1; m2(x2)=1+4x2
* =1/8: x1=0, x2=q
» g=1/4: x1=0, x2=q
e g=5: x1=(-1+4q)/6, x2=(1+2q)/6
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SO Static Traffic Assignment: Example

min Xt (%) +%t, (%, )+ Xty (%)
st. f*=q, Demand

flbc + fzbc = Oye

f*>0,f*>0,f°>0 Non - negativity

X = flac + fzbC

x, = f* Definition of link flows
X3 — fzbc

0S.0. solution: (@,X;,X;)=(80110’9) \ \
S min it () + %t (3, )+ Xt () = min [my (3 ), + [ my (x, Jo, + [ my (3 ),

d(xt, (%) d(xt,(x,)) d(x:ts(%,))
Wh — 1 , — 2 , — 3
ere my(x,) ™ m,(x,) % m(x,) i,
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Lecture 6 Qutline

U Mathematical programs (MPs)

O Formulation of shortest path problems as MPs

O Formulation of U.O. traffic assignment asan MP

U Relationship between U.O. and S.O. traffic assignment
0 Solving S.O. traffic assignment by hand
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