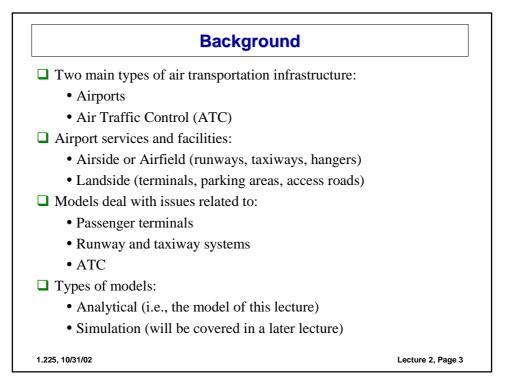
1.225J (ESD 205) Transportation Flow Systems

Lecture 2


Modeling Air Traffic Flows

Prof. Ismail Chabini Prof. Amedeo R. Odoni

Lecture 2 Outline

	Background	1
_	раскутопп	1

- ☐ Factors that 'Determine' a Runway Capacity
- ☐ Minimum Time Separation between Two Arriving Aircrafts
- ☐ Arrival Capacity Model for One Runway
- Example
- ☐ Practical Issues and Model Analysis
- ☐ Other Models
- ☐ Summary

Background ☐ Two main types of air transportation infrastructure: Airports • Air Traffic Control (ATC) ☐ Airport services and facilities: • Airside or Airfield (runways, taxiways, hangers) • Landside (terminals, parking areas, access roads) ☐ Models deal with issues related to: Passenger terminals Runway and taxiway systems • ATC ☐ Types of models: • Analytical (i.e., the model of this lecture) • Simulation (will be covered in a later lecture) 1.225, 10/31/02 Lecture 2. Page 4

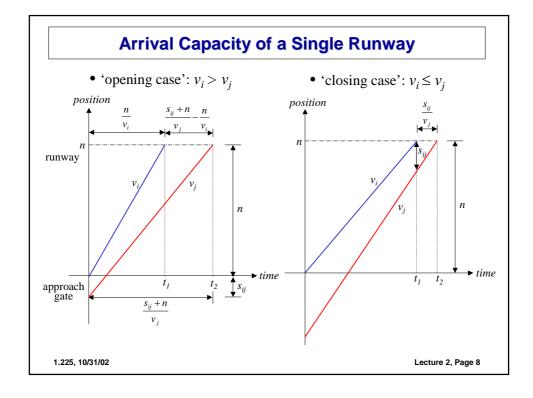
Arrival runway capacity is (partially) determined by:

- ☐ Rules of Traffic Flow:
 - Minimum separation between two successive aircraft
 - Only one aircraft can be on the runway at any time
- ☐ Aircraft Population:
 - Types: Heavy, Large/Medium, Small
 - Mix: Percentage of each type

1.225, 10/31/02 Lecture 2, Page 5

Arrival Capacity Model of a Single Runway

☐ Idealized representation:



- □ Notation:
 - *n*: length of final approach path
 - *i* (*j*): type of leading (trailing) aircraft
 - v_i : ground speed of type i aircraft
 - o_i : runway occupancy time of type i aircraft
 - s_{ij} : minimum separation between two airborne aircraft
 - T_{ij} : minimum acceptable time interval between successive arrivals at the runway of type i and type j aircrafts (unknown)

Minimum Time Separation of Two Aircrafts

- ☐ Minimum time separation is a consequence of:
 - Minimum space separation must not be violated
 - Only a single aircraft can be on the runway at a given time instance
- \square Question: What is the expression of minimum time separation T_{ij} ?
- $\Box T_{ii} > o_i$
- ☐ Answer:

$$T_{ij} = \begin{cases} \max \left[\frac{n + s_{ij}}{v_j} - \frac{n}{v_i}, o_i \right] & \text{for } v_i > v_j \quad \text{('opening case')} \\ \max \left[\frac{s_{ij}}{v_j}, o_i \right] & \text{for } v_i \leq v_j \quad \text{('closing case')} \end{cases}$$

Minimum Acceptable Interarrival Time

$$T_{ij} = \begin{cases} \max \left[\frac{n + s_{ij}}{v_j} - \frac{n}{v_i}, o_i \right] & \text{for } v_i > v_j \quad \text{('opening case')} \\ \max \left[\frac{s_{ij}}{v_j}, o_i \right] & \text{for } v_i \leq v_j \quad \text{('closing case')} \end{cases}$$

- \square *K*: number of aircraft types
- \square Number of 'type *i* aircraft followed by type *j* aircraft' pairs = K^2
- \square p_{ii} : probability of 'type *i* aircraft followed by type *j* aircraft' pair
- \square Minimum acceptable interarrival time: $E[T_{ij}] = \sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij} \times T_{ij}$

1.225, 10/31/02 Lecture 2, Page 9

Example

• Parameters (given)

• $[t_{ii}]$ matrix

Trailing aircraft

Leading aircraft 1(H) 2(L) 3(M) 4(S)
$$T = \begin{bmatrix} 1(H) & 96 & 157 & 207 & 320 \\ 60 & 69 & 107 & 222 \\ 60 & 60 & 60 & 107 & 222 \end{bmatrix}$$

$$T = \begin{array}{c|cccc} 2(L) & 60 & 69 & 107 & 222 \\ 3(M) & 60 & 69 & 82 & 196 \\ 4(S) & 60 & 69 & 82 & 100 \end{array}$$

• $[s_{ii}]$ matrix (given)

Trailing aircraft

• $[p_{ij}]$ matrix: $p_{ij} = p_i p_j$

Trailing aircraft

Leading aircraft
$$1(H)$$
 $2(L)$ $3(M)$ $4(S)$

$$P = \begin{bmatrix} 1(H) & 0.04 & 0.07 & 0.07 & 0.02 \\ 2(L) & 0.07 & 0.1225 & 0.1225 & 0.035 \\ 3(M) & 0.07 & 0.1225 & 0.1225 & 0.035 \\ 4(S) & 0.02 & 0.035 & 0.035 & 0.01 \end{bmatrix}$$

$$\implies$$
 E[T_{ij}] = $\sum_{i}^{K} \sum_{j}^{K} p_{ij} \times T_{ij} = 106.3 \text{sec}$

1.225, 10/31/02

Lecture 2, Page 10

Arrival Runway Capacity: Example

- Maximum flow rate (frequency of arrivals): $\frac{1}{E[T_{ij}]} = 33.9$ arrivals/hour \Rightarrow It is called maximum theoretical capacity.
- ☐ In practice, minimum separation is: $T'_{ij} = T_{ij} + b$
- ☐ In practice, $\frac{1}{E[T'_{ij}]}$ is called the 'saturation capacity' or 'maximum throughput'.
- ☐ Typically, $b = 10 \sec \implies \frac{1}{E[T'_{ii}]} = \frac{1}{116.3} = 30.9$ aircrafts/hour

1.225, 10/31/02 Lecture 2, Page 11

Comments on Analytical Model

- ☐ The analytical model is simple, but insightful!
- ☐ It assesses impacts on capacity of changes in ATC rules and ATC operational conditions and methods
- ☐ Example of possible changes to increase capacity:
 - Reduce separation
 - Increase final approach speed
 - Length of approach path (increase?)
 - Change mix by forbidding or pricing out small planes
 - Sequencing of aircrafts that are waiting to land (operational problem)

Analysis of the Analytical Model

- ☐ Limitations of the model:
 - v_i and o_i are random in practice, but assumed constant in the model
 - Distance between aircrafts is random in practice, but not in the model
 - The model assumes an isolated runway dedicated for landing only
- ☐ Other complications in capacity modeling:
 - Airports contain and operate under multiple runways (PS1)
 - A given set of runways is operated using multiple configurations
 - The use of a configuration depends on:
 - Level of demand
 - Weather conditions

☐ Airport passenger terminal design

- Wind speed and direction
- Traffic mix
- A runway can be used for both arrivals and departures (PS1)

1.225, 10/31/02 Lecture 2, Page 13

Other Models in Air Transportation

- □ Simulation models of the airfield
 □ Analysis of air delay using analytical or simulation models (see later lectures)
- Estimation of the frequency of 'conflicts' resolution:
 - Estimation of number of overtaking conflicts involving aircrafts flying on the same airway
 - Prediction of the number of conflicts at the intersection of two airways
 - Estimates given by these models are principal indicators of the workload of an ATC system

Lecture 2 Summary	
□ Background	
☐ Factors that 'Determine' a Runway Capacity	
☐ Minimum Time Separation between Two Arriving Aircraft	îts
☐ Arrival Capacity Model for One Runway	
☐ Example	
☐ Practical Issues and Model Analysis	
☐ Other Models	
1.225, 10/31/02 L	ecture 2, Page 15