1.225J (ESD 225) Transportation Flow Systems

Lecture 8

Delays in Probabilistic Models: Elements from Queueing Theory

Profs. Ismail Chabini and Amedeo Odoni

□ Introduction to Queueing □ Conceptual Representation of Queueing Systems □ Codes for Queueing Models □ Terminology and Notation □ Little's Law and Basic Relationships □ Exponential Distribution for Interarrival and Service times Modeling □ State Transition Diagram □ Derivation of waiting characteristics for *M/M/1*□ Summary

1.225, 11/26/02

Lecture 8 Outline

Lecture 8, Page 2

Applications of Queueing Theory

- ☐ Some familiar queues:
 - Airport check-in
 - Automated Teller Machines (ATMs)
 - Fast food restaurants
 - On hold on an 800 phone line
 - Urban intersection
 - Toll booths
 - Aircraft in a holding pattern
 - Calls to the police or to utility companies
- ☐ Level-of-service (LOS) standards
- ☐ Economic analyses involving trade-offs among operating costs, capital investments and LOS
- ☐ Queueing theory predicts various characteristics of waiting lines (or queues) such as average waiting time

Strengths and Weaknesses of Queueing Theory

- ☐ Queueing models necessarily involve approximations and simplification of reality
- ☐ Results give a sense of order of magnitude, of changes relative to a baseline, of promising directions in which to move
- ☐ Closed-form results are essentially limited to "steady state" conditions and derived primarily (but not solely) for birth-and-death systems and "phase" systems
- ☐ Some useful bounds for more general systems at steady state
- ☐ Numerical solutions are increasingly viable for dynamic systems

Terminology and Notation □ State of system: number of customers in queueing system □ Queue length: number of customers waiting for service $\square N(t)$ = number of customers in queueing system at time t $\square P_n(t)$ = probability that N(t) is equal to n $\square \lambda_n$: mean arrival rate of new customer when N(t) = n $\square \mu_n$: mean (combined) service rate when N(t) = n \square *Transient condition*: state of system at t depends on the state of the system at t=0 or on t \square Steady state condition: system is independent of initial state and t \square s: number of servers (parallel service channels) \square If λ_n and the service rate per busy server are constant, then $\lambda_n = \lambda$, $\mu_n = s\mu$ \square Expected interarrival time = $\frac{1}{\lambda}$ \square Expected service time = $\frac{1}{\mu}$ 1.225, 11/26/02 Lecture 8, Page 9

Quantities of Interest at Steady State

☐ Given:

- λ = arrival rate
- μ = service rate per service channel (number of servers =1, in this lecture)

□ *Unknowns*:

- L = expected number of users in queueing system
- L_a = expected number of users in queue
- W = expected time in queueing system per user (W = E(w))
- W_q = expected waiting time in queue per user ($W_q = E(w_q)$)
- \square 4 unknowns \Rightarrow We need 4 equations

Relationships between L, L_q , W, and W_q

- \square 4 unknowns: L, W, L_q , W_q
- □ Need 4 equations. We have the following 3 equations:
 - $L = \lambda W$ (Little's law)
 - $\bullet \ L_q = \lambda W_q$
 - $W = W_q + \frac{1}{\mu}$
- \square If we know L (or any one of the four expected values), we can determine the value of the other three
- ☐ The determination of L may be hard or easy depending on the type of queueing model at hand (i.e. M/M/I, M/M/s, etc.)
- $\square L = \sum_{n=0}^{\infty} n P_n \quad (P_n : \text{probability that } n \text{ customers are in the system})$

Modeling Interarrival Time and Service Time

- *T* : Interarrival (service) time random variable
- Density function: $f_T(t) = \begin{cases} \alpha e^{-\alpha t}, & t \ge 0 \\ 0, & t < 0 \end{cases}$
- $P\{0 \le T \le t\} = 1 e^{-\alpha t}, \quad E(T) = \frac{1}{\alpha}, \quad \text{var}(T) = \frac{1}{\alpha^2}$
- For small Δt , $P\{0 \le T \le \Delta t\} \approx \alpha \Delta t$ (why?)
- $e^x = 1 + x + \sum_{k=2}^{\infty} \frac{x^k}{k!}$
- $P\{0 \le T \le \Delta t\} = 1 e^{-\alpha \Delta t} = 1 (1 \alpha \Delta t + \sum_{k=2}^{\infty} \frac{(-\alpha \Delta t)^k}{k!})$ $\approx \alpha \Delta t \text{ (for small } \Delta t)$
- Interarrival Time : $\alpha = \lambda$; Service Time : $\alpha = \mu$

State Transition Diagram for *M/M/1*

☐ States:

1.225, 11/26/02

- 0
- (I)
- (2
- ...
- \bigcap
- (n+1)

Lecture 8, Page 13

 \Box During Δt :

☐ Another way to represent it: *State Transition Diagram*

1.225, 11/26/02

Lecture 8, Page 14

Observing State Transition Diagram from Two Points

☐ From point 1:

 $\lambda P_0 = \mu P_1 \quad (\lambda + \mu) P_1 = \lambda P_0 + \mu P_2$

$$(\lambda + \mu)P_n = \lambda P_{n-1} + \mu P_{n+1}$$

 \square From point 2:

$$\lambda P_0 = \mu P_1$$
 $\lambda P_1 = \mu P_2$

$$\lambda P_n = \mu P_{n+1}$$

1.225, 11/26/02

Lecture 8, Page 15

Derivation of P_0 and P_n

- \square Putting it all together: $P_1 = \frac{\lambda}{\mu} P_0$, $P_2 = \left(\frac{\lambda}{\mu}\right)^2 P_0$, ..., $P_n = \left(\frac{\lambda}{\mu}\right)^n P_0$
- $\square \text{ Since } \sum_{n=0}^{\infty} P_n = 1, \implies P_0 \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = 1 \implies P_0 = \frac{1}{\sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n}$
- $\Box \text{ Let } \rho = \frac{\lambda}{\mu}, \text{ then } \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = \sum_{n=0}^{\infty} \rho^n = \frac{1-\rho^{\infty}}{1-\rho} = \frac{1}{1-\rho} \quad (\because \rho < 1)$
- Therefore, $P_0 = \frac{1}{\sum_{n=0}^{\infty} \rho^n} = 1 \rho$ and $P_n = \rho^n (1 \rho)$

1.225, 11/26/02

Lecture 8, Page 16

Derivation of L, W, W_q , and L_q

•
$$L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n \rho^n (1-\rho) = (1-\rho) \sum_{n=0}^{\infty} n \rho^n = (1-\rho) \rho \sum_{n=1}^{\infty} n \rho^{n-1}$$

 $= (1-\rho) \rho \frac{d}{d\rho} \left(\sum_{n=0}^{\infty} \rho^n \right) = (1-\rho) \rho \frac{d}{d\rho} \left(\frac{1}{1-\rho} \right)$
 $= (1-\rho) \rho \left(\frac{1}{(1-\rho)^2} \right) = \frac{\rho}{(1-\rho)} = \frac{\lambda/\mu}{1-\lambda/\mu} = \frac{\lambda}{\mu-\lambda}$

•
$$W = \frac{L}{\lambda} = \frac{\lambda}{\mu - \lambda} \cdot \frac{1}{\lambda} = \frac{1}{\mu - \lambda}$$

•
$$W_q = W - \frac{1}{\mu} = \frac{1}{\mu - \lambda} - \frac{1}{\mu} = \frac{\lambda}{\mu(\mu - \lambda)}$$

•
$$L_q = \lambda W_q = \lambda \cdot \frac{\lambda}{\mu(\mu - \lambda)} = \frac{\lambda^2}{\mu(\mu - \lambda)}$$

1.225, 11/26/02 Lecture 8, Page 17

Lecture 8 Summary

- ☐ Introduction to Queueing
- ☐ Conceptual Representation of Queueing Systems
- ☐ Codes for Queueing Models
- ☐ Terminology and Notation
- ☐ Little's Law and Basic Relationships
- ☐ Exponential Distribution for Interarrival and Service times Modeling
- ☐ State Transition Diagram
- \square Derivation of waiting characteristics for M/M/I