
Lecture 8Lecture 8

Delays in Probabilistic Models:Delays in Probabilistic Models:
Elements fromElements from QueueingQueueing TheoryTheory

Profs.Profs. Ismail ChabiniIsmail Chabini andand Amedeo OdoniAmedeo Odoni

1.2251.225J (ESD 225) Transportation Flow SystemsJ (ESD 225) Transportation Flow Systems

1.225, 11/26/02 Lecture 8, Page 2 

Lecture 8 OutlineLecture 8 Outline
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� Exponential Distribution for Interarrival and Service times Modeling 
� State Transition Diagram 
� Derivation of waiting characteristics for M/M/1 
� Summary 
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Applications ofApplications of QueueingQueueing TheoryTheory

� Some familiar queues: 
• Airport check-in 
• Automated Teller Machines (ATMs) 
• Fast food restaurants 
• On hold on an 800 phone line 
• Urban intersection 
• Toll booths 
• Aircraft in a holding pattern 
• Calls to the police or to utility companies 

� Level-of-service (LOS) standards 
� Economic analyses involving trade-offs among operating costs, capital 

investments and LOS 
� Queueing theory predicts various characteristics of waiting lines (or 

queues) such as average waiting time 
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QueueingQueueing Models Can Be Essential in Analysis of CapitalModels Can Be Essential in Analysis of Capital 
InvestmentsInvestments
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Strengths and Weaknesses ofStrengths and Weaknesses of QueueingQueueing TheoryTheory

� Queueing models necessarily involve approximations and 
simplification of reality 

� Results give a sense of order of magnitude, of changes relative to 
a baseline, of promising directions in which to move 

� Closed-form results are essentially limited to “steady state” 
conditions and derived primarily (but not solely) for birth-and-
death systems and “phase” systems 

� Some useful bounds for more general systems at steady state 
� Numerical solutions are increasingly viable for dynamic systems 
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QueueingQueueing Process andProcess and QueueingQueueing SystemSystem
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QueueingQueueing network consisting of fivenetwork consisting of five queueingqueueing systemssystems
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A Code forA Code for QueueingQueueing Models:Models: AA//BB//mm

� Some standard code letters for A and B: 
• M: Negative exponential (M stands for memoryless) 
• D: Deterministic 
• Ek:kth-order Erlang distribution 
• G: General distribution 

� Model covered in this lecture: M/M/1 
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Terminology and NotationTerminology and Notation

� State of system: number of customers in queueing system 
� Queue length: number of customers waiting for service 
� N(t) = number of customers in queueing system at time t 
� Pn(t) = probability that N(t) is equal to n 
�λn: mean arrival rate of new customer when N(t) = n 
�µn: mean (combined) service rate when N(t) = n 
� Transient condition: state of system at t depends on the state of the 

system at t=0 or on t 
� Steady state condition: system is independent of initial state and t 
� s: number of servers (parallel service channels) 
� If λn and the service rate per busy server are constant, then λn =λ, µn=sµ 

� Expected interarrival time = 
λ 
1 

� Expected service time = µ 
1 

1.225, 11/26/02 Lecture 8, Page 10 

� Unknowns: 
• L = expected number of users in queueing system 
• Lq = expected number of users in queue 
• W = expected time in queueing system per user (W = E(w)) 
• Wq = expected waiting time in queue per user (Wq = E(wq)) 

� 4 unknowns ⇒ We need 4 equations 

Quantities of Interest at Steady StateQuantities of Interest at Steady State

� Given: 
• λ = arrival rate 
• µ = service rate per service channel (number of servers =1, in this 

lecture) 
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LittleLittle’’s Laws Law
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Relationships betweenRelationships between LL,, LLqq, W, W, and, and WWqq

� 4 unknowns: L, W, Lq, Wq 

� Need 4 equations. We have the following 3 equations: 
• L = λW (Little’s law) 
• Lq = λWq 

• W = Wq + 

� If we know L (or any one of the four expected values), we can determine 
the value of the other three 

� The determination of L may be hard or easy depending on the type of 
queueing model at hand (i.e. M/M/1, M/M/s, etc.) 
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ModelingModeling InterarrivalInterarrival Time and Service TimeTime and Service Time

• T variablerandomtime(service)alInterarriv: 

− tαe α , t ≥ 0 
• :functionDensity fT (t) = 


0 , t < 0


1(• P 0{ ≤ T ≤ t} = 1− e−αt , TE ) = 
1 , var(T ) = 2α α 

• smallFor ∆t, P 0{ ≤ T ≤ ∆t} ≈α∆t (why?) 

∞ k 

• ex = 1+ x +∑ 
x 

k =2 k! 
k∞ (−α∆t) )t• P 0{ ≤ T ∆≤ t} = 1− e−α ∆t = 1− (1−α +∆ ∑


k =2 k!

≈α∆t small(for ∆t) 

• :TimealInterarriv α = λ; :TimeService α = µ 
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State Transition Diagram forState Transition Diagram for M/M/1M/M/1
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� Another way to represent it: State Transition Diagram 
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Observing State Transition Diagram from Two PointsObserving State Transition Diagram from Two Points
� From point 1: 
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Derivation ofDerivation of PP00 andand PPnn
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Derivation ofDerivation of LL,, WW,, WWqq, and, and LLqq
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Lecture 8 SummaryLecture 8 Summary

� Introduction to Queueing 
� Conceptual Representation of Queueing Systems 
� Codes for Queueing Models 
� Terminology and Notation 
� Little’s Law and Basic Relationships 
� Exponential Distribution for Interarrival and Service times Modeling 
� State Transition Diagram 
� Derivation of waiting characteristics for M/M/1 
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