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Conceptual Networks: Definitions

U A network is:
» aset of nodes N and aset of links A
* nodes are also called vertices or points

* links are also called arcs or edges
U Examples:

«————— Netl Net 2
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U Directed networks: al links are directed

U Path: asequence of links from one node to another node
(i.e, (54)-(4,3)-(3,2)

U A network is connected if thereis at least one path from one node to

another node (Netl is connected whereas Net2 is not)
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Representation of an Urban Road Network

U Physica U Conceptual
Intersections Nodes
Streets Links
Zones Centroids

U Simple node representation
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Intersection Representations

U Simple node representation:
* no direction differenciation

« no conflicting movement T
U Subnetwork representation:
« explicit direction representation

L
« conflicting turnsin an intersection 4—qu</ e
are captured by internal links and

their impedances ”O\ % /’.O*
U Conceptual representation is not unique and ? ?
depends on:

* type of anaysis
* data availability to build, validate, and apply model
* accuracy vs. computation time trade-off
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Shortest Path Problems

U Basic problem: find a shortest path and the shortest distance between
two nodes

U Basic problem is called the one-to-one shortest path problem
U Types of shortest path problems:
* One-to-one
* One-to-all: find shortest paths from one node to al nodes
* All-to-one: find shortest paths from all nodes to one node

* Many-to-many: find shortest paths from many nodes to many
other nodes

* All-to-all: find shortest paths from al node pairs
1 “ Shortest” also denotes minimum general cost
U There are hundreds of shortest path algorithms, but they are similar
U Some algorithms work for non-negative costs only
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Dijkstra’s Shortest Paths Algorithm: Example
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First Shortest Path Algorithm (Dijkstra’s Algorithm)

U Notation:
* S source node
* d(j): length of shortest path from sto j discovered so far

* p(j): immediate predecessor to node j on shortest path froms to |
discovered so far

« k: last node selected by algorithm

U Step 1: Initialization
*d(s)=0,p(s) =*
e d(j) = «, p(j) = -, for al other nodesj =s
ek=s
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Dijkstra’s Shortest Paths Algorithm: Example
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First Shortest Path Algorithm (Dijkstra’s Algorithm)

U Step 2: Update |abels of neighbors in open state
 For al (k, j), if j isopen do:
If d(j) <d(k) +1(k, j) then
d(j) =d(k) +1(k )

p() =k
OStep 3
« Find a open state hode i such that d(i) = min{d(j), j is an open node)}
UStep 4
* Find aclosed state node j* such that d(i) = d(j*) + 1(*,i)
UStep 5

* Nodei isclosed. If no node in open state, STOP.
Otherwise k =i, return to Step 2
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Shortest Paths Algorithm: Example
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Shortest Paths Algorithm: Example
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Shortest Paths Algorithm: Example
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Shortest Paths Algorithm: Example
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Observations about Dijkstra’'s Algorithm

U Dijkstra sagorithm isin genera not valid if somel(i,j) <0
U Shortest paths form atree
U The algorithm can aso solve the al-to-one problem

U If you solve for a one-to-many problem, stop the algorithm when all
destination nodes are closed

U Shortest path problemisan LP problem, but it is more efficient and
intuitive to look at it as a network problem as we did in class
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Extensions of Shortest Path Problem

U Thereis a huge number of potential extensions of the classical
shortest path problem

U Problems on dynamic networks (link lengths change over time)

U Problems on probabilistic networks (link lengths are random
variables assuming discrete values or a continuous range of values)

L Combinations thereof

U Solutions to these problems depend on the assumptions regarding the
state of knowledge and on the relative magnitude of the parameters
involved

U The meaning of “shortest path” is also an issue in some cases
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A Traffic Assignment Problem
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“All-or-nothing” Traffic Assignment

sense?

Does this make
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Traffic Assignment Models

U Conceptual definition:

(input) Supply/Demand (input)

Supply Demand

Interaction

* Network representation of
transportation network
» Link performance functions output

(FI owsand Travel Ti m@

U Principles of assignment to represent the interaction
e User Optimal (U.0.): O-D flows are assigned to paths with
minimum travel time

» System Optimal (S.0.): O-D flows are assigned such that total
travel time on the network is minimum

* Origin-destination flows
e Zoning

1.225, 11/07/02 Lecture 4, Page 19
Zoning

U Physical zones U Zone-to-zone Flows
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Analysis Periods

flowsa

| Morning-peak Midday period Evening-peak time of day
period period
U Over an analysis period, flows are assumed constant in order for steady-
state analysis to apply
U The duration of a period islonger than atrip
U Typica analysis periods: morning-peak, midday, evening-peak
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Lecture 4 Summary

U Conceptua Networks: Definitions
U Representation of an Urban Road Network (Supply)
U Shortest Paths (Reading: pp. 359-367, 6.2.3 and 6.2.4 of R6)
* Introduction
« Dijkstra’ s algorithm: example
« Dijkstra’ s agorithm: statement
* Observations
U Extensions to Classical Shortest Path Problems
U All-or-nothing traffic assignment
U Zoning and Analysis Periods (Demand)
U Motivation for more advanced traffic assignment models
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