1.225J (ESD 225) Transportation Flow Systems

Lecture 4

Introduction to Network Models and Shortest Paths

Profs. Ismail Chabini and Amedeo Odoni

□ Conceptual Networks: Definitions □ Representation of an Urban Road Network (Supply) □ Shortest Paths (Reading: pp. 359-367, 6.2.3 and 6.2.4 of R6) • Introduction • Dijkstra's algorithm: example • Dijkstra's algorithm: statement • Observations □ Extensions to Classical Shortest Path Problems □ All-or-nothing traffic assignment □ Zoning and Analysis Periods (Demand) □ Motivation for more advanced traffic assignment models

Lecture 4 Outline

1.225, 11/07/02 Lecture 4, Page 2

□ Summary

Conceptual Networks: Definitions

- ☐ A *network* is:
 - a set of *nodes* N and a set of *links* A
 - nodes are also called vertices or points
 - links are also called arcs or edges
- ☐ Examples:

- □ Directed networks: all links are directed
- \square *Path*: a sequence of links from one node to another node (i.e., (5,4)-(4,3)-(3,2))
- ☐ A network is *connected* if there is at least one path from one node to another node (Net1 is connected whereas Net2 is not)

1.225, 11/07/02 Lecture 4, Page 3

Representation of an Urban Road Network Physical Conceptual Intersections Nodes Streets Links Zones Centroids Simple node representation

Intersection Representations

- ☐ Simple node representation:
 - no direction differenciation
 - no conflicting movement
- ☐ Subnetwork representation:
 - explicit direction representation
 - conflicting turns in an intersection are captured by internal links and their impedances
- ☐ Conceptual representation is not unique and depends on:
 - type of analysis
 - data availability to build, validate, and apply model
 - accuracy vs. computation time trade-off

1.225, 11/07/02 Lecture 4, Page 5

Shortest Path Problems

- ☐ Basic problem: find a shortest path and the shortest distance between two nodes
- ☐ Basic problem is called the one-to-one shortest path problem
- ☐ Types of shortest path problems:
 - One-to-one
 - One-to-all: find shortest paths from one node to all nodes
 - All-to-one: find shortest paths from all nodes to one node
 - Many-to-many: find shortest paths from many nodes to many other nodes
 - All-to-all: find shortest paths from all node pairs
- "Shortest" also denotes minimum general cost
- ☐ There are hundreds of shortest path algorithms, but they are similar
- □ Some algorithms work for non-negative costs only

1.225, 11/07/02 Lecture 4, Page 7

First Shortest Path Algorithm (Dijkstra's Algorithm)

□ Notation:

- s: source node
- d(j): length of shortest path from s to j discovered so far
- *p*(*j*): immediate predecessor to node *j* on shortest path from *s* to *j* discovered so far
- k: last node selected by algorithm

☐ Step 1: Initialization

- d(s) = 0, p(s) = *
- $d(j) = \infty$, p(j) = -, for all other nodes $j \neq s$
- k = s

First Shortest Path Algorithm (Dijkstra's Algorithm)

- ☐ Step 2: Update labels of neighbors in open state
 - For all (k, j), if j is open do:

If
$$d(j) < d(k) + l(k, j)$$
 then
$$d(j) = d(k) + l(k, j)$$

$$p(j) = k$$

- ☐ Step 3
 - Find a open state node i such that $d(i) = \min\{d(j), j \text{ is an open node}\}$
- ☐ Step 4
 - Find a closed state node j^* such that $d(i) = d(j^*) + l(j^*,i)$
- ☐ Step 5
 - Node i is closed. If no node in open state, STOP.

Otherwise k = i, return to Step 2

Observations about Dijkstra's Algorithm
\square Dijkstra's algorithm is in general not valid if some $l(i, j) < 0$
☐ Shortest paths form a tree
☐ The algorithm can also solve the all-to-one problem
☐ If you solve for a one-to-many problem, stop the algorithm when all destination nodes are closed
☐ Shortest path problem is an LP problem, but it is more efficient and intuitive to look at it as a network problem as we did in class

Extensions of Shortest Path Problem

Lecture 4, Page 15

1.225, 11/07/02

 Problems on dynamic networks (link lengths change over time) Problems on probabilistic networks (link lengths are random variables assuming discrete values or a continuous range of value Combinations thereof 	es)
variables assuming discrete values or a continuous range of value	es)
☐ Combinations thereof	
☐ Solutions to these problems depend on the assumptions regarding state of knowledge and on the relative magnitude of the paramete involved	_
☐ The meaning of "shortest path" is also an issue in some cases	

Lecture 4 Summary □ Conceptual Networks: Definitions □ Representation of an Urban Road Network (Supply) □ Shortest Paths (Reading: pp. 359-367, 6.2.3 and 6.2.4 of R6) • Introduction • Dijkstra's algorithm: example • Dijkstra's algorithm: statement • Observations □ Extensions to Classical Shortest Path Problems □ All-or-nothing traffic assignment □ Zoning and Analysis Periods (Demand) □ Motivation for more advanced traffic assignment models