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CHAPTER 4 - Frequently used Symbols

(04

8m
a(t)

a(t)

Numerical coefficients

Generalized sensitivity coefficient
Instantaneous accel eration of afollowing
vehicleat timet

Instantaneous acceleration of alead
vehicleat timet

Numerical coefficient

Single lane capacity (vehicle/hour)
Rescaled time (in units of response time,
T

Short finite time period

Amplitude factor

Numerical coefficient

Traffic stream concentration in vehicles
per kilometer

Jam concentration

Concentration at maximum flow
Concentration where vehicle to vehicle
interactions begin

Normalized concentration

Effective vehicle length

Inverse Laplace transform
Proportionality factor

Sensitivity coefficient, i = 1,2,3,...
Natural logarithm of x

Fow in vehicles per hour

Normalized flow

Average spacing rear bumper to rear
bumper

Initial vehicle spacing

Final vehicle spacing

Vehicle spacing for stopped traffic
Inter-vehicle spacing

Inter-vehicle spacing change

Average response time

Propagation time for a disturbance
Time

—
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Callision time

Resaction time

Speed of alead vehicle

Speed of afollowing vehicle

Final vehicle speed

Free mean speed, speed of traffic near zero
concentration

Initial vehicle speed

Relative speed between alead and
following vehicle

Velocity profile of thelead vehicle of a
platoon

Speed

Final vehicle speed

Freguency of a monochromatic speed
oscillation

Instantaneous acceleration of afollowing
vehicleat timet

Instantaneous speed of alead vehicle at
timet

Instantaneous speed of afollowing vehicle
atimet

Instantaneous speed of alead vehicle at
timet

Instantaneous speed of afollowing vehicle
attimet

Instantaneous position of alead vehicle at
timet

Instantaneous position of the following
vehicleat timet

Instantaneous position of the ith vehicle at
timet

Position in amoving coordinate system

Average of avariable x

Frequency factor
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CAR FOLLOWING MODELS

It has been estimated that mankind currently devotes over 10
million man-years each year to driving the automobile, which on
demand provides a mobility unequaled by any other mode of
transportation. And yet, even with the increased interest in
traffic research, we understand relatively little of what is
involved in the "driving task". Driving, apart from walking,
talking, and egting, isthe most widely executed skill in the world
today and possibly the most challenging.

Cumming (1963) categorized the various subtasks that are
involved in the overall driving task and paralleled the driver's
role as an information processor (see Chapter 3). This chapter
focuses on one of these subtasks, the task of one vehicle
following another on a single lane of roadway (car following).
This particular driving subtask is of interest because it is
relatively simple compared to other driving tasks, has been
successfully described by mathematical models, and is an
important facet of driving. Thus, understanding car following
contributes significantly to an understanding of traffic flow. Car
following is arelatively simple task compared to the totality of
tasks required for vehicle control. However, it isatask that is
commonly practiced on dua or multiple lane roadways when
passing becomes difficult or when traffic is restrained to asingle
lane. Car following is atask that has been of direct or indirect
interest since the early development of the automobile.

One aspect of interest in car following is the average spacing, S,
that one vehicle would follow another at a given speed, V. The
interest in such speed-spacing relations is related to the fact that
nearly all capacity estimates of a single lane of roadway were
based on the equation:

C= (1000) VIS 4.0
where
C= Capacity of asingle lane
(vehicles/hour)
= Speed (km/hour)

S= Average spacing rear bumper to rear
bumper in meters

The first Highway Capacity Manual (1950) lists 23
observational studies performed between 1924 and 1941 that
were directed at identifying an operative speed-spacing relation
so that capacity estimates could be established for single lanes of

roadways. The speed-spacing relations that were obtained from
these studies can be represented by the following equation:

S = a+pV+yV? (4.2)

wherethe numerical values for the coefficients, o, B, and y take
onvarious values. Physica interpretations of these coefficients
are given below:

o« = theeffective vehicle length, L
p = thereactiontime, T
vy = thereciproca of twice the maximum average

deceleration of afollowing vehicle

In this case, the additional term, v V2, can provide sufficient
spacing so that if a lead vehicle comes to a full stop
instantaneously, the following vehicle has sufficient spacing to
come to a complete stop without collision. A typical value
empirically derived for v would be ~ 0.023 seconds %/t . A less
conservative interpretation for the non-linear term would be;

y = 05(a -3, (4.3)

where a; and @, are the average maximum decelerations of the
following and lead vehicles, respectively. These terms attempt
to alow for differences in braking performances between
vehicleswhether real or perceived (Harris 1964).

For v = 0, many of the so-called "good driving" rules that have
permeated safety organizations can be formed. In general, the
speed-spacing Equation 4.2 attempts to take into account the
physical length of vehicles; the human-factor element of
perception, decision making, and execution times; and the net
physics of braking performances of the vehicles themselves. It
has been shown that embedded in these models are theoretical
estimates of the speed at maximum flow, (a/y)%®%; maximum
flow, [B + 2(c v)*°™"; and the speed at which small changesin
traffic stream speed propagate back through a traffic stream,
(ee/y) °° (Rothery 1968).

The speed-spacing models noted above are applicable to cases
where each vehiclein the traffic stream maintains the same or
nearly the same constant speed and each vehicle is attempting to
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4. CARFOLLOWINGANODELSO

maintain the same spacing (i.e., it describes a steady-state traffic
stream).

Through the work of Reuschel (1950) and Pipes (1953), the
dynamical elements of a line of vehicles were introduced. In
these works, the focus was on the dynamical behavior of a
stream of vehicles as they accelerate or decelerate and each
driver-vehicle pair attempts to follow one another. These efforts
were extended further through the efforts of Kometani and
Sasaki (1958) in Japan and in a series of publications starting in

4.1 Model Development

Car following models of single lane traffic assume that thereis
a correlation between vehicles in a range of inter-vehicle
spacing, from zero to about 100 to 125 meters and provides an
explicit form for this coupling. The modeling assumes that each
driver in afollowing vehicle is an active and predictable control
element in the driver-vehicle-road system. These tasks are
termed psychomotor skills or perceptual-motor skills because
they require a continued motor responseto a continuous series
of stimuli.

The relatively simple and common driving task of one vehicle
following another on a straight roadway where there is no
passing (neglecting all other subsidiary tasks such as steering,
routing, etc.) can be categorized in three specific subtasks:

m  Perception: The driver collects relevant information
mainly through the visual channel. This
information arises primarily from the motion
of the lead vehicle and the driver's vehicle.
Some of the more obvious information
elements, only part of which a driver is
sensitive to, are vehicle speeds, accelerations
and higher derivatives (eg., "jerk"), inter-
vehicle spacing, relative speeds, rate of
closure, and functions of these variables (e.g.,
a"collision time").

®  Decision
Making: A driver interpretsthe information obtained by
sampling and integratesit over timein order to
provide adeguate updating of  inputs.
Interpreting the information is carried out
within the framework of a knowledge of

1958 by Herman and his associates at the General Motors
Research Laboratories. These research efforts were microscopic
approaches that focused on describing the detailed manner in
which one vehicle followed another. With such a description,
the macroscopic behavior of single lane traffic flow can be
approximated. Hence, car following models form a bridge
between individua "car following" behavior and the
meacrascopic world of aline of vehicles and their corresponding
flow and stability properties.

vehicle characteristics or class of
characteristics and from the driver's vast
repertoire of driving experience.  The
integration of current information and
catalogued knowledge adlows for the
development of driving strategies which
become "automatic" and from which evolve
"driving skills".

The skilled driver can execute control
commands with dexterity, smoothness, and
coordination, constantly relying on feedback
from his own responses which are
superimposed on the dynamics of the system's
counterparts (lead vehicle and roadway).

= Control:

Itis not clear how adriver carries out these functionsin detail.
The millions of miles that are driven each year attest to the fact
that with little or no training, drivers successfully solve a
multitude of complex driving tasks. Many of the fundamental
questions related to driving tasks lie in the area of 'human
factors' and in the study of how human skill is related to
information processes.

The process of comparing the inputs of a human operator to that
operator's outputs using operational analysis was pioneered by
the work of Tustin (1947), Ellson (1949), and Taylor (1949).
These attempts to determine mathematical expressions linking
input and output have met with limited success. One of the
primary difficulties is that the operator (in our case the driver)
has no unique transfer function; the driver is a different
'mechanism’ under different conditions. While such an approach
has met with limited success, through the course of studieslike
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these a number of useful concepts have been developed. For
example, reaction times were looked upon as characteristics of
individuals rather than functional characteristics of the task itself.
In addition, by introducing the concept of “information”, it has
proved possible to parallel reaction time with the rate of coping
with information.

The early work by Tustin (1947) indicated maximum rates of the
order of 22-24 hits/second (sec). Knowledge of human
performance and the rates of handling information made it
possible to design the response characteristics of the machine for
maximum compatibility of what really is an operator-machine

system.

The very concept of treating an operator as atransfer function
implies, partly, that the operator acts in some continuous
manner. There is some evidence that this is not completely
correct and that an operator actsin adiscontinuous way. There
is a period of time during which the operator having made a
"decison” toreact isin anirreversible state and that the response
must follow at an gppropriatetime, which later is consistent with
the task.

The concept of a human behavior being discontinuous in
carrying out tasks was first put forward by Uttley (1944) and
has been strengthened by such studies as Telfor's (1931), who
demonstrated that sequential responses are correlated in such a
way that the response-time to a second stimulus is affected
significantly by the separation of the two stimuli. Inertia, on the
other hand, both in the operator and the machine, creates an
appearance of smoothness and continuity to the control element.

In car following, inertiaal so provides direct feedback data to the
operator which is proportional to the acceleration of the vehicle.
Inertia also has a smoothing effect on the performance
requirements of the operator since the large masses and limited
output of drive-trains eliminate high frequency components of
the task.

Car following models have not explicitly attempted to take al of
these factors into account. The approach that is used assumes
that a stimulus-response relationship exists that describes, at
least phenomenologicaly, the control process of a driver-vehicle
unit. The stimulus-response equation expresses the concept that
adriver of avehicle responds to a given stimulus according to a
relation:

Response = A Stimulus (4.9

where A isaproportionality factor which equates the stimulus
function to the response or control function. The stimulus
function is composed of many factors: speed, relative speed,
inter-vehicle spacing, accelerations, vehicle performance, driver
thresholds, etc.

Do dll of these factors come into play part of the time? The
question is, which of these factors are the most significant from
an explanatory viewpoint. Can any of them be neglected and still
retain an approximate description of the situation being
modeled?

What is generdly assumed in car following modeling is that a
driver attemptsto: (a) keep up with the vehicle ahead and (b)
avoid callisions.

These two elements can be accomplished if the driver maintains
asmal averagerelative speed, U, over short time periods, say
&, ie,

1 rtesv2
<U,-U> = <U > St o U, 4(t)dt (4.5)

iskept small. Thisensuresthat ‘collision’ times:

t
L = ﬁ—r: (4.6)

are kept large, and inter-vehicle spacings would not appreciably
increase during the time period, ét. The duration of the &t will
depend in part on dertness, ability to estimate quantities such as:
spacing, relative speed, and the level of information required for
the driver to assess the situation to a tolerable probability level
(e.g., the probability of detecting the relative movement of an
object, in this case a lead vehicle) and can be expressed as a
function of the perception time.

Because of therole rdative-speed plays in maintaining relatively
large collision times and in preventing a lead vehicle from
'drifting' away, it is assumed as a first approximation that the
argument of the stimulus function is the relative speed.

From the discussion above of driver characteristics, relative
speed should be integrated over time to reflect the recent time
history of events, i.e,, the stimulus function should have the form
likethet of Equation 4.5 and be generalized so that the stimulus
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at a given time, t, depends on the weighted sum of all earlier
values of the relative speed, i.e.,

<Uj-Up > = <Uy >:ft

+5t/2 / /
w2 o(t-t)U 4(t)dt (4.7

where o (t) is aweighing function which reflects a driver's
estimation, evaluation, and processing of earlier information
(Chandler et a. 1958). The driver weighs past and present
information and responds at some future time. The consequence
of using a number of specific weighing functions has been
examined (Lee 1966), and a spectral analysis approach has been
used to derive aweighing function directly from car following
data (Darroch and Rothery 1969).

The genera features of a weighting function are depicted in
Figure 4.1. What has happened a number of seconds (= 5 sec)
inthe past is not highly relevant to adriver now, and for a short
time (~ 0.5 sec) adriver cannot readily evaluate the information
availableto him. One approach is to assume that

where
o(t-T) = O, for t=T (4.9
ot-T) = 1, for t =T (4.10)
and
f “¥(t-Tdt = 1
o

For this case, our stimulus function becomes
Stimulus(t) = U, (t-T)- U, (t-T) (4.11)

which corresponds to a simple constant response time, T, for a
driver-vehicle unit. In the genera case of o (t), there is an

averageresponsetime, T, given by

o(t) = 8(t-T) (4.8)
T® = t/o(t")dt’
® - [ tolt) (4.12)
» Past Future
3
g Weig.hting
5 function
f'e)
©
o ) \-/\ TN
VAV B
()]
=
k|
(]
(1
Now
Time
Figure 4.1

Schematic Diagram of Relative Speed Stimulus
and a Weighting Function Versus Time (Darroch and Rothery 1972).
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The main effect of such aresponsetime or delay is that the driver
isregponding at dl timesto astimulus. The driver is observing
the stimulus and determining a response that will be made some
timein the future. By delaying the response, the driver obtains
"advanced" information.

For redundant stimuli there is little need to delay response, apart
from the physical execution of the response. Redundancy aone
can provide advance information and for such cases, response
times are shorter.

The response function is taken as the acceleration of the
following vehicle, because the driver has direct control of this
guantity through the 'accelerator’ and brake pedals and also
because adriver obtains direct feedback of this variable through
inertial forces, i.e,

Response (t) = a(t) = X; (t) (4.13)

where X (t) denotes the longitudinal position aong the roadway
of theith vehicle at timet. Combining Equations4.11 and 4.13
into Equation 4.4 the stimulus-response equation becomes
(Chandler et al. 1958):

%(t) = ADK(t-T)%(t-T)] (419

or equivalently

Errors DRIVER

Lead
Vehicle
State

v PERCEPTION &
>+ INFORMATION
i COLLECTION

DECISION MAKING| VEHICLE
& EXECUTION

() = A% %0 (4.15)

Equation 4.15 is afirst approximation to the stimulus-response
equation of car-following, and as such it is agrossly simplified
description of acomplex phenomenon. A generalization of car
following in a conventional control theory block diagram is
shown in Figure 4.1a. In this same format the linear car-
following model presented in Equation 4.15 is shown in Figure
4.1b. Inthisfigure the driver is represented by atime delay and
again factor. Undoubtedly, a more complete representation of
car following includes a set of equations that would model the
dynamical properties of the vehicle and the roadway
characteristics. It would aso include the psychological and
physiologica properties of drivers, as well as couplings between
vehicles, other than the forward nearest neighbors and other
driving tasks such as lateral control, the state of traffic, and
emergency conditions.

For example, vehicle performance undoubtedly aters driver
behavior and plays an important rolein rea traffic where mixed
traffic represents a wide performance distribution, and where
gppropriate responses cannot always be physically achieved by
a subset of vehicles comprising the traffic stream. Thisisone
area where research would contribute substantialy to a better
understanding of the growth, decay, and frequency of
disturbances in traffic streams (see, e.g., Harris 1964; Herman
and Rothery 1967; Lam and Rothery 1970).

Output
Commands

Following
Vehicle

» DYNAWICS | State

(Feedback Loop)

Figure 4.1a
Block Diagram of Car-Following.
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“DRIVER"

Lead
Vehicle > TIME DELAY

Speed r

Acceleration
Command

Following
Vehicle
Speed

* Integrator >

Figure 4.1b
Block Diagram of the Linear Car-Following Model.

4.2 Stability Analysis

Inthis section we address the stability of the linear car following
equation, Equation 4.15, with respect to disturbances. Two
particular types of stabilities are examined: local stability and
asymptotic stability.

Local Stability is concerned with the response of a following
vehicle to a fluctuation in the motion of the vehicle directly in
front of it; i.e, it is concerned with the localized behavior
between pairs of vehicles.

Asymptotic Stability is concerned with the manner in which a
fluctuation in the motion of any vehicle, say the lead vehicle of
aplatoon, is propagated through aline of vehicles.

The analysis develops criteria which characterize the types of
possible motion allowed by the model. For a given range of
model parameters, the analysis determines if the traffic stream
(as described by the model) is stable or nat, (i.e., whether
disturbances are damped, bounded, or unbounded). Thisisan
important determination with respect to understanding the
applicability of the modeling. It identifies several characteristics
with respect to single lane traffic flow, safety, and model validity.
If the model is redlistic, this range should be consistent with
mesasured vaues of these parameters in any applicable situation
where disturbances are known to be stable. It should aso be
consistent with the fact that following avehicleis an extremely
common experience, and is generally stable.

4.2.1 Local Stability

In this analysis, the linear car following equation, (Equation
4.15) isassumed. Asbefore, the position of the lead vehicle and
thefollowing vehicle at atime, t, are denoted by X, (t) and X, (t),
respectively. Rescaling time in units of the response time, T,
using the transformation, t = 7T, Equation 4.15 simplifiesto

(v+1) = Cl(¥(v) *(7))] (4.16)

where C = AT. The conditions for the local behavior of the
following vehicle can be derived by solving Equation 4.16 by the
method of Laplace transforms (Herman et al. 1959).

The evaluation of the inverse Laplace transform for Equation
4.16 has been performed (Chow 1958; Kometani and Sasaki
1958). For example, for the case where the lead and following
vehicles are initially moving with a constant speed, u, the
solution for the speed of the following vehicle was given by
Chow where v denotes the integral part of t/T. The complex
form of Chow's solution makes it difficult to describe various
physical properties (Chow 1958).

v-n

5 U+ 7t 5 HWW . L
Xn(t) =u (;) JAEH+1-2TA (n—l)!o! (Uo(t ‘[j) u)dt
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However, the general behavior of the following vehicle's motion
can be characterized by considering a specific set of initial
conditions. Without any loss in generdity, initial conditions are
assumed so that both vehicles are moving with a constant speed,
u. Thenusing amoving coordinate system z(t) for both the lead
and following vehicles the formal solution for the acceleration
of the following vehicle is given more simply by:

LYC(C + s=97s (4.16a)

whereL? denotesthe inverse Laplace transform. The character
of the above inverse Laplace transform is determined by the
singularities of the factor (C + se®)! since Cs?Z(s) isaregular
function. These singularities in the finite plane are the simple
poles of the roots of the equation

C+se®=0 (4.17)

Similarly, solutions for vehicle speed and inter-vehicle spacings
can beobtained. Again, the behavior of the inter-vehicle spacing
is dictated by the roots of Equation 4.17. Even for small t, the
character of the solution depends on the pole with the largest real
pat,say, s, = a,+ ib,, sincedl other poles have considerably
larger negative real parts so that their contributions are heavily
damped.

Hence, the cgaracter of the inverse Laplace transform has the
form e* e™'. For different values of C, the pole with the
largest real part generates four distinct cases:

a if C< e™(=0.368), then a,<0, b,-0, and the
motion is non-oscillatory and exponentialy
damped.

b) ifet<C<mn/2then ax<0,b, >0andthe
motion is oscillatory with exponential damping.

C) ifC=n/2,then a,=0, b, >0andthemotionis
oscillatory with constant amplitude.

d) if C>mn/2 then a,>0, b, >0andthemotionis
oscillatory with increasing amplitude.

The above establishes criteria for the numerical values of C
which characterize the motion of the following vehicle. In

particular, it demonstrates that in order for the following vehicle
not to over-compensate to a fluctuation, it is necessary that C
<1/e. For values of C that are somewhat greater, oscillations
occur but are heavily damped and thus insignificant. Damping
occurs to some extent as long as

C<m/2.

These results concerning the oscillatory and non-oscillatory
behavior apply to the speed and acceleration of the following
vehicleaswell asto the inter-vehicle spacing. Thus, e.g., if C <
e, theinter-vehicle spacing changes in a non-oscillatory manner
by the amount A4S, where

AS = %(V*U) (4.18)

when the speeds of the vehicle pair changesfrom U to V. An
important case is when the lead vehicle stops. Then, the final
speed, V, iszero, and the total change in inter-vehicle spacing is
-U/ A

In order for a following vehicle to avoid a ‘collision’ from
initiation of a fluctuation in a lead vehicle's speed the inter-
vehicle spacing should be at least as large as U/A. On the other
hand, in the interests of traffic flow the inter-vehicle spacing
should be small by having A aslarge as possible and yet within
the stable limit. Ideally, the best choice of A is(eT)™.

The result expressed in Equation 4.18 follows directly from
Chow's solution (or more simply by elementary considerations).
Because theinitial and final speeds for both vehiclesare U and
V, respectively, we have

[ XMt = v-u (4.19)
and from Equation 4.15 we have
A0 % (O]dt = AS
or

AS = [~ IOl - % (4.20)
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as given earlier in Equation 4.18.

In order to illustrate the genera theory of loca stability, the
results of severa caculations using a Berkeley Ease analog
computer and an IBM digital computer are described. It is
interesting to note that in solving the linear car following
equation for two vehicles, estimates for the local stability
condition were first obtained using an analog computer for
different values of C which differentiate the various type of
motion.

Figure 4.2 illustrates the solutions for C= e*, where the lead
vehicle reduces its speed and then accel erates back to its original
speed. Since C has a value for the locally stable limit, the
accel eration and speed of the following vehicle, as well as the
inter-vehicle spacing between the two vehicles are non-
oscillatory.

In Figure 4.3, the inter-vehicle spacing is shown for four other
vaues of C for the same fluctuation of the lead vehicle as shown
inFHgure4.2. Thevauesof C range over the cases of oscillatory
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Note: Vehicle 2 follows Vehicle 1 (lead car) with atime lag T=1.5 sec and a value of C=¢e?(~0.368), the limiting value for local

stability. Theinitial velocity of each vehicleisu

Figure 4.2
Detailed Motion of Two Cars Showing the
Effect of a Fluctuation in the Acceleration of the Lead Car (Herman et al. 1958).
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C=050 C=080
/\
\

VIV T

Time

Change in Car Spacing

Note: Changesin car spacings from an original constant spacing between two cars for the noted values of C. The acceleration
profile of thelead car isthe same as that shown in Figure 4.2.

Figure 4.3
Changes in Car Spacings from an
Original Constant Spacing Between Two Cars (Herman et al. 1958).

motion where the amplitude is damped, undamped, and of
increasing amplitude.

For the values of C = 0.5 and 0.80, the spacing is oscillatory and
heavily damped.
For C=157( z%),

the spacing oscillates with constant amplitude. For C = 1.60, the
motion is oscillatory with increasing amplitude.

Local Sability with Other Controls. Qualitative arguments can
be given of adriver's lack of sensitivity to variation in relative
acceleration or higher derivatives of inter-vehicle spacings
because of the inability to make estimates of such quantities. It
is of interest to determine whether a control centered around
such derivatives would be localy stable. Consider the car
following equation of the form

%(v+1) - CST:[xa(r)fxf(r)l (4.21)

for m=0,1,2,3..., i.e., a control where the acceleration of the
following vehicle is proportional to the mth derivative of the

inter-vehicle spacing. For m = 1, we obtain the linear car
following equation.

Using theidentica anadlysisfor any m, the equation whose roots
determine the character of the motion which results from
Equation 4.21 is

C+s™e® =0 (4.22)

None of these roots lie on the negative real axis when mis even,
therefore, local stability is possible only for odd values of the
mth derivative of spacing: relative speed, thefirst derivative of
relative acceleration (m = 3), etc. Note that this result indicates
that an acceleration response directly proportiona to inter-
vehicle spacing stimulusis unstable.

4.2.2 Asymptotic Stability

In the previous analysis, the behavior of one vehicle following
another was considered. Here a platoon of vehicles (except for
the platoon leader) follows the vehicle ahead according to the
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linear car following equation, Equation 4.15. The criteria
necessary for asymptotic stability or instability were first
investigated by considering the Fourier components of the speed
fluctuation of a platoon leader (Chandler et a. 1958).

The set of equations which attempts to describe a line of N
identical car-driver unitsis:

X0t T) = A1) %4 (0] (4.23)

where n=0,1,2,3,...N.

Any specific solution to these equations depends on the velocity
profile of the lead vehicle of the platoon, uy(t), and the two
parameters A and T. For any inter-vehicle spacing, if a
disturbance grows in amplitude then a ‘collison’ would
eventually occur somewhere back in the line of vehicles.

While numerical solutions to Equation 4.23 can determine at
what point such an event would occur, the interest is to
determine criteriafor the growth or decay of such a disturbance.
Since an arbitrary speed pattern can be expressed as a linear
combination of monochromatic components by Fourier analysis,
the specific profile of aplatoon leader can be simply represented
by one component, i.e, by a constant together with a
monochromeatic oscillation with frequency, w and amplitude, f,
0.8,

u ) = a,+f e (4.24)

and the speed profile of the nth vehicle by

u,t) = a,+f,e (4.25)
Substitution of Equations 4.24 and 4.25 into Equation 4.23
yields:

u ) = a,*F(w,A,T,n)e st (4.26)

where the amplitude factor F (w, A, T, n) isgiven by

[1+(%)2+2(%)9n(wT)] 2

which decreases with increasing n if

1+(%)2+2(%)si n(wT) > 1

i.e if

© 5 26n(wT
. (wT)

The severest restriction on the parameter A arises from the low
frequency range, sincein thelimitasw - 0, A must satisfy the
inequality

AT < %[Iimmﬁo(wT)/si n(wT)] (4.27)

Accordingly, asymptotic stability isinsured for al frequencies
wherethisinequality is satisfied.

For those values of w within the physically realizable frequency
range of vehicular speed oscillations, the right hand side of the
inequality of 4.27 has a short range of values of 0.50 to about
0.52. The asymptotic stability criteria divides the two parameter
domain into stable and unstable regions, as graphicaly
illustrated in Figure 4.4.

The criteriafor local stability (namely that no local oscillations
occur when A 7% eY) dso insures asymptoticstability. It hasalso
been shown (Chandler et al. 1958) that a speed fluctuation can
be approximated by:

4 1 %

%0050 (T 7

4.28)

g [t-n/A] ] (

4n/A(1/2A-T)

Hence, the speed of propagation of the disturbance with respect

to the moving traffic stream in number of inter-vehicle
separations per second, n/t, isA.

That is, the time required for the disturbance to propagate
between pairs of vehiclesis A%, a constant, which is independent
of theresponsetime T. It is noted from the above equation that
in the propagation of a speed fluctuation the amplitude of the
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Regions of Asymptotic Stability (Rothery 1968).

disturbance grows as the response time, T, approaches 1/(2A)
until instability isreached. Thus, while

AT < 0.5 ensures gtahility, short reaction times increase the range
of the sensitivity coefficient, A, that ensures stability. From a
practical viewpoint, small reaction times also reduce relatively
large responses to a given stimulus, or in contrast, larger
response times require relatively large responses to a given
stimulus. Acceleration fluctuations can be correspondingly
analyzed (Chandler et al. 1958).

4.2.1.1 Numerical Examples

Inorder toillustrate the general theory of asymptotic stability as
outlined above, theresultsof anumber of numerical calculations
are given. Figure 4.5 graphicaly exhibits the inter-vehicle
spacings of successive pairs of vehicles versus time for a platoon
of vehicles. Here, three values of C were used: C = 0.368, 0.5,
and 0.75. Theinitial fluctuation of the lead vehicle, n = 1, was
the same asthat of thelead vehicleillustrated in Figure 4.2. This
disturbance consists of a slowing down and then a speeding up
to the original speed so that the integral of acceleration over time
is zero. The particularly stable, non-oscillatory response is
evident in the first case where C = 0.368 (=1/e), the loca
stability limit. Asanalyzed, a heavily damped oscillation occurs
in the second case where C = 0.5, the asymptotic limit. Note that
the amplitude of the disturbance is damped as it propagates

through the line of vehicles even though this case is at the
asymptotic limit.

This results from the fact that the disturbance is not a single
Fourier component with near zero frequency. However,
instability is clearly exhibited in the third case of Figure 4.5
where C = 0.75 and in Figure 4.6 where C = 0.8. In the case
shown in Fgure 4.6, the trajectories of each vehiclein a platoon
of nine are graphed with respect to a coordinate system moving
with the initia platoon speed u. Asymptotic instability of a
platoon of nine cars is illustrated for the linear car following
equation, Equation 4.23, where C = 0.80. For t =0, the vehicles
aredl moving with avelocity u and are separated by a distance
of 12 meters. The propagation of the disturbance, which can be
readily discerned, leads to "collision” between the 7th and 8th
carsat aboutt = 24 sec.  Thelead vehicleat t = O decelerates
for 2 seconds at 4 km/h/sec, so that its speed changes from u to
u -8 kmvh and then accelerates back to u. Thisfluctuation in the
speed of the lead vehicle propagates through the platoon in an
unstable manner with the inter-vehicle spacing between the
seventh and eighth vehicles being reduced to zero at about 24.0
sec after theinitial phase of the disturbance is generated by the
lead vehicle of the platoon.

In Figure 4.7 the envel ope of the minimum spacing that occurs
between successive pairs of vehiclesis graphed versustime

4-11
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Note:  Diagram uses Equation 4.23 for three values of C. The fluctuation in acceleration of the lead car, car number 1, isthe
same as that shown in Fig. 4.2 At t=0 the cars are separated by a spacing of 21 meters.

Figure 4.5

Inter-Vehicle Spacings of a Platoon of Vehicles
Versus Time for the Linear Car Following Model (Herman et al. 1958).

where the lead vehicle's speed varies sinusoidally with a point. Here, the numerical solution yields a maximum and

frequency w =27/10 radian/sec. The envelope of minimum
inter-vehicle spacing versus vehicle position is shown for three
valuesof . Theresponsetime, T, equals 1 second. It has been
shown that the frequency spectrum of relative speed and
acceleration in car following experiments have essentidly al
their content below this frequency (Darroch and Rothery 1973).

The vaues for the parameter A were 0.530, 0.5345, and
0.550/sec. Thevauefor thetimelag, T, was 1 sec in each case.
Thefrequency used is that value of w which just satisfies
the stability equation, Equation 4.27, for the case where
A=0.5345/sec. Thislatter figure serves to demonstrate not only
the stability criteriaas afunction of frequency but the accuracy
of the numerical results. A comparison between that which is
predicted from the stability analysis and the numerical solution
for the constant amplitude case (A=0.5345/sec) serves as a check

minimum amplitude that is constant to seven significant places.

4.2.1.2 Next-Nearest Vehicle Coupling

In the nearest neighbor vehicle following model, the motion of
each vehicle in a platoon is determined solely by the motion of
the vehicle directly in front. The effect of including the motion
of the"next nearest neighbor” vehicle (i.e., the car which istwo
vehicles ahead in addition to the vehicle directly in front) can be
ascertained. An approximation to this type of contral, is the
model

Koot T) = AR, 10Xl *ALX 0%l (4.29)
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Figure 4.6

Asymptotic Instability of a Platoon of Nine Cars (Herman et al. 1958).
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Envelope of Minimum Inter-Vehicle Spacing Versus Vehicle Position (Rothery 1968).
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(g 3T < S(@D)sin(T)] (4.30)

whichinthelimit w- Ois

4.3 Steady-State Flow

This section discusses the properties of steady-state traffic flow
based on car following models of single-lane traffic flow. In
particular, the associated speed-spacing or equivaent speed-
concentration relationships, as well as the flow-concentration
relationships for single lane traffic flow are devel oped.

The Linear Case. The eguations of motion for asingle lane of
traffic described by the linear car following model are given by:

X (t+T) = A[X() %, (0] (4.32)

wheren=1,2,3, ....

In order to interrelate one steady-state to another under this
control, assume (up to atime t=0) each vehicleistraveling at a
speed U, and that the inter-vehicle spacing is S;. Suppose that
a t=0, the lead vehicle undergoes a speed change and increases
or decreasesits gpeed so that its final speed after sometime, t, is
U;. A specific numerical solution of this type of transition is
exhibited in Figure 4.8.

In this example C = AT=0.47 so that the stream of traffic is
stable, and speed fluctuations are damped. Any case where the
asymptotic stability criteria is satisfied assures that each
following vehicle comprising the traffic stream eventually
reaches a state traveling at the speed U; . In the transition from
aspeed U, to aspeed U, , the inter-vehicle spacing S changes
fromSto S, where

S = §+A7HU; - U) (4.33)

Thisresult follows directly from the solution to the car following
equetion, Equation 4.16a or from Chow (1958). Equation 4.33

1
(hy 2T > 2 (4.31)

This equation states that the effect of adding next nearest
neighbor coupling to the control element is, to the first order, to
incresse A, to (A, + A,). Thisreducesthevaluethat A, can have
and still maintain asymptotic stability.

also follows from elementary considerations by integration of
Equation 4.32 as shown in the previous section (Gazis et a.
1959). Thisresult is not directly dependent onthetimelag, T,
except that for thisresult to be valid thetimelag, T, must allow
the equation of motion to form a stable stream of traffic. Since
vehicle spacing istheinverse of traffic stream concentration, k,
the speed-concentration relation corresponding to Equation 4.33
IS.

k™ = kAiU,-U) (4.34)

The significance of Equations 4.33 and 4.34 is that:

1) They link an initia steady-state to a second arbitrary
steady-state, and

2)  They establish relationships between macroscopic traffic
stream variables involving a microscopic car following
parameter, A .

Inthis respect they can be used to test the applicability of the car
following model in describing the overall properties of single
lane traffic flow. For stopped traffic, U, = 0, and the
corresponding spacing, S,, is composed of vehicle length and
"bumper-to-bumper" inter-vehicle spacing. The concentration
corresponding to aspacing, S, is denoted by k ; and is frequently
referred to as the 'jam concentration'.

Givenk;, then Equetion 4.34 for an arbitrary treffic state defined
by a speed, U, and a concentration, k, becomes

4-14
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Note: A numerical solution to Equation 4.32 for the inter-vehicle spacings of an 11- vehicle platoon going from one steady-state to
another (AT = 0.47). Thelead vehicle's speed decreases by 7.5 meters per second.

Figure 4.8
Inter-Vehicle Spacings of an Eleven Vehicle Platoon (Rothery 1968).

U = Ak™-k™ (4.35)

A comparison of this relationship was made (Gazis et a. 1959)
with a specific set of reported observations (Greenberg 1959) for
a case of single lane traffic flow (i.e., for the northbound traffic
flowing through the Lincoln Tunnel which passes under the
Hudson River between the States of New Y ork and New Jersey).
This comparison is reproduced in Figure 4.9 and leads to an
estimate of 0.60 sec 1 for A. This estimate of A implies an upper
bound for T = 0.83 sec for an asymptotic stable traffic stream
using this facility.

While this fit and these values are not unreasonable, a
fundamental problem is identified with this form of an equation
for aspeed-spacing relationship (Gazis et al. 1959). Because it
is linear, this relationship does not lead to a reasonable
description of traffic flow. This is illustrated in Figure 4.10
where the same data from the Lincoln Tunnel (in Figure 4.9) is
regraphed. Here the graphisin the form of a normalized flow,

versus a normalized concentration together with the
corresponding theoretical steady-state result derived from
Equation 4.35, i.e.,

q - Uk = A(1%) (4.36)

Theinability of Equation 4.36 to exhibit the required qualitative
relationship between flow and concentration (see Chapter 2) led
to the modification of the linear car following equation (Gazis et
al. 1959).

Non-Linear Models. The linear car following model specifies
an acceleration response which is completely independent of
vehicle spacing (i.e, for agiven relative vel ocity, response is the
same whether the vehicle following distance is small [e.g., of the
order of 5 or 10 meters] or if the spacing is relatively large[i.e,
of the order of hundreds of meters]). Qualitatively, we would
expect that response to a given relative speed to increase with
smaller spacings.
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Note: The data arethose of (Greenberg 1959) for the Lincoln Tunnel. The curve represents a "least squares fit* of Equation 4.35
to the data.

Figure 4.9
Speed (miles/hour) Versus Vehicle Concentration (vehicles/mile).(Gazis et al. 1959).

0.6
0.5
04
alrk; 0.3
0.2

0.1

Note: The curve corresponds to Equation 4.36 where the parameters are those from the "fit" shown in Figure 4.9.

Figure 4.10
Normalized Flow Versus Normalized Concentration (Gazis et al. 1959).
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In order to attempt to take this effect into account, the linear
model is modified by supposing that the gain factor, A, isnot a
constant but isinversely proportional to vehicle spacing, i.e.,

A= AIS) = Mg/, (0)%,4(0)] (4.37)

where A, is a new parameter - assumed to be a constant and
which shall be referred to as the sensitivity coefficient. Using
Equation 4.37 in Equation 4.32, our car following equationis:

A
L [%,(0%..0] (439

e
TR0

forn=1,23,...

As before, by assuming the parameters are such that the traffic
stream is stable, this equation can be integrated yielding the
steady-state relation for speed and concentration:

u-= Alln(l<j/k) (4.39)
and for steady-state flow and concentration:
q = AKin(k/K) (4.40)

where again it is assumed that for u=0, the spacing is equal to

an effective vehicle length, L = k*. These relations for steady-
state flow are identical to those obtained from considering the
traffic stream to be approximated by a continuous compressible
fluid (see Chapter 5) with the property that disturbances are
propagated with a constant speed with respect to the moving
medium (Greenberg 1959). For our non-linear car following
equation, infinitesimal disturbances are propagated with speed
A, . Thisis consistent with the earlier discussion regarding the
speed of propagation of a disturbance per vehicle pair.

It can be shown that if the propagation time, T;, is directly
proportional to spacing (i.e., 7, = S), Equations 4.39 and 4.40
are obtained where the constant ratio S/7;, is identified as the
constant A,.

These two approaches are not analogous. In the fluid analogy
case, the speed-spacing relationship is 'followed' at every instant
before, during, and after a disturbance. In the case of car
following during the transition phase, the speed-spacing, and

therefore the flow-concentration relationship, does not describe
the state of the traffic stream.

A solution to any particular set of equations for the motion of a
traffic stream specifies departures from the steady-state. Thisis
not the case for simple headway models or hydro-dynamical
approachesto single-lane traffic flow because in these cases any
small speed change, once the disturbance arrives, each vehicle
ingtantaneoudly relaxes to the new speed, at the ‘proper’ spacing.

This emphasizes the shortcoming of these alternate approaches.
They cannot take into account the behavioral and physica
aspects of disturbances. In the case of car following models, the
initial phase of a disturbance arrives at the nth vehicle
downstream from the vehicle initiating the speed change a a
time (n-1)T seconds after the onset of the fluctuation. The time
it takes vehicles to reach the changed speed depends on the
parameter A, for thelinear model, and 4,, for the non-linear
model, subject to the restriction that A1 > T or A, < ST,
respectively.

These redtrictions assure that the signal speed can never precede
theinitial phase speed of adisturbance. For thelinear case, the
restriction is more than satisfied for an asymptotic stable traffic
stream. For small speed changes, it is a so satisfied for the non-
linear modd by assuming that the stability criteria results for the
linear caseyidds abound for the stability in the non-linear case.
Hence, theinequality A7/S<0.5 provides a sufficient stability
condition for the non-linear case, where S is the minimum
spacing occurring during a transition from one steady-state to
another.

Before discussing a more general form for the sensitivity
coefficient (i.e., Equation 4.37), the same reported data
(Greenberg 1959) plotted in Figures 4.9 and 4.10 are graphed in
Figures 4.11 and 4.12 together with the steady-state relations
(Equations 4.39 and 4.40 obtained from the non-linear model,
Equation 4.38). Thefit of the data to the steady-state relation via
the method of "least squares” is good and the resulting values for
A, and k; are 27.7 km/h and 142 veh/km, respectively.
Assuming that this data is a representative sample of this
facility'straffic, the value of 27.7 km/h is an estimate not only of
the sensitivity coefficient for the non-linear car following model
but it is the ‘characteristic speed’ for the roadway under
consideration (i.e., the speed of the traffic stream which
maximizes the flow).
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Figure 4.11
Speed Versus Vehicle Concentration (Gazis et al. 1959).
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Note: The curve corresponds to Equation 4.40 where parameters are those from the "fit" obtained in Figure 4.11.

Figure 4.12
Normalized Flow Versus Normalized Vehicle Concentration (Edie et al. 1963).
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The corresponding vehicle concentration at maximum flow, i.e.,
when u=4,,is €'k. This predicts a roadway capacity of
A,€'k; of about ~1400 vehvh for the Lincoln Tunnel. A noted
undesirable property of Equation 4.40 is that the tangent dg/dt
isinfinite at k = 0, whereas a linear relation between flow and
concentration would more accurately describe traffic near zero
concentration. Thisisnot aserious defect in the model since car
following models are not applicable for low concentrations
where spacings are large and the coupling between vehicles are
weak. However, this property of the model did suggest the
following alternative form (Edie 1961) for the gain factor,

A= A& (O TYIX (0%, (01

Thisleadsto the following expression for a car following model:

X (t+T
s N O

o (tT) =
s [%,(0) - X,.,(0]2

As before, this can be integrated giving the following steady-
state equations:

U - ue™o (4.42)

and

q = Uke™n (4.43)

where U; is the "free mean speed”, i.e., the speed of the traffic
stream near zero concentration and k,, is the concentration when
theflow isamaximum. Inthis case the sensitivity coefficient, A,
can be identified as k. The speed a optima flow is e'U,
which, as before, corresponds to the speed of propagation of a
disturbance with respect to the moving traffic stream. This
model predicts afinite speed, U, , near zero concentration.

Idedlly, this speed concentration relation should be translated to
the right in order to more completely take into account
observations that the speed of the traffic stream is independent
of vehicle concentration for low concentrations, .i.e.

U = U for O<k<k; (4.44)
and

(4.45)

U = Ufexp—[ﬁ}

where k; corresponds to a concentration where vehicle to
vehicleinteractions begin to take place so that the stream speed
begins to decrease with increasing concentration. Assuming that
interactions take place at a spacing of about 120 m, k, would
have a value of about 8 veh/km. A "kink" of this kind was
introduced into a linear model for the speed concentration
relationship (Greenshields 1935).

Greenshields empirica modd for a speed-concentration relation
isgiven by

U = Ui(1-Kk) (4.46)

where U, isa*"free mean speed” and k; is the jam concentration.

It is of interest to question what car following model would
correspond to the above steady-state equations as expressed by
Equation 4.46. The particular model can be derived in the
following elementary way (Gazis et al. 1961). Equation 4.46 is
rewritten as

U =U-L9 (4.47)

Differentiating both sides with respect to time obtains

U = (U, LSS (4.48)

which after introduction of atime lag is for the (n+1) vehicle:

UL

(L T) = ——
hs [%,(0) %, ()]

[%:0%..01  (4.49)
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The gain factor is:
UL

X0 %, 012 (420

The above procedure demonstrates an alternate technique at
arriving a stimulus response equations from relatively
elementary considerations. This method was used to develop
early car following models (Reuschel 1950; Pipes 1951). The
technique does pre-suppose that a speed-spacing relation reflects
detailed psycho-physical aspects of how one vehicle follows
another. To summarize the car-following equation considered,
we have:

X (t+T) = A[X() %, (] (4.51)

where the factor, A, is assumed to be given by the following:

= A constant, A = A,

®  Aterminversely proportiona to the spacing, A = A,/S;

m A term proportional to the speed and inversely
proportional to the spacing squared, A = A,U/S; and

m A terminversely proportional to the spacing squared,
A=A,/ S2

These models can be considered to be specia cases of amore
general expression for the gain factor, namely:

A= a, Xt TX(0) X, (01 (4.52)

wherea, isaconstant to be determined experimentally. Model
specification is to be determined on the basis of the degree to
which it presents a consistent description of actua traffic
phenomena Equations4.51 and 4.52 provide arelatively broad
framework in so far as steady-state phenomena is concerned
(Gaziset a. 1961).

Using these equations and integrating over time we have

f(U) = a- f(9+b (4.53)

where, asbefore, U isthe steady-state speed of the traffic stream,
S is the steady-state spacing, and a and b are appropriate

constants consistent with the physical restrictions and where
f,(¥), (p=m or?), isgiven by

f09 = x (4.54)

forp# 1and

fo() = fnx (4.55)

for p=1. Theintegration constant b is related to the "free mean
speed” or the "jam concentration™ depending on the specific
vauesof mand{. Form>1,¢# 1,orm=1,¢>1

b = f.(U) (4.56)

and

b = -afi(L) (4.57)

for al other combinationsof m and ¢, except ¢ < 1 and
m=1.

For those caseswhere! <1 and m= 1 it is not possible to satisfy
either the boundary condition at k = 0 or k; and the integration
constant can be assgned arbitrarily, e.g., a k., the concentration
a maximum flow or more appropriately at some ‘critical’
concentration near the boundary condition of a “free speed”
determined by the "kink" in speed-concentration data for the
particular facility being modeled. Therelationship betweenk
and k; is a characteristic of the particular functional or mode!
being used to describe traffic flow of the facility being studied
and not the physical phenomenoninvolved. For example, for the
twomodelsgivenby ¢ =1, m=0, and { =2, m=0, maximum
flow occurs at a concentration of €' k and k/ 2, respectively.
Such a result is not physically unredlistic. Physicaly the
question iswhether or not the measured value of q ., occurs at
or near the numerical value of theseterms, i.e,, k= e'k or k/2
for the two examples cited.

Using Equations 4.53, 4.54, 4.55, 4.56, 4.57, and the definition
of steady-state flow, we can obtain the relationships between
speed, concentration, and flow. Severa examples have been
givenabove. Fgures4.13 and 4.14 contain these and additional
examples of flow versus concentration relations for various
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Figure 4.13
Normalized Flow Versus Normalized Concentration (Gazis et al. 1963).
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Figure 4.14
Normalized Flow versus Normalized Concentration Corresponding to the Steady-State
Solution of Equations 4.51 and 4.52 for m=1 and Various Values of ¢ (Gazis 1963).
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values of ¢ and m. These flow curves are normalized by letting
0y = 00y and K, = K/K.

It can be seen from these figures that most of the models shown
here reflect the general type of flow diagram required to agree
with the qualitative descriptions of steady-state flow. The
spectrum of models provided are capable of fitting data like that
shown in Figure 4.9 so long as a suitable choice of the
parameters is made.

The generdized expression for car following models, Equations
4.51 and 4.52, has also been examined for non-integral values
for mand ¢ (May and Keller 1967). Fittingdata obtained on the
Eisenhower Expressway in Chicago they proposed a model with
m=0.8and{ =2.8. Variousvauesfor mand ¢ can be identified
in the early work on steady-state flow and car following .

Thecasem=0, { = 0 equatesto the"simpl€" linear car following
model. The case m=0, ¢ = 2 can be identified with a model
developed from photographic observations of traffic flow made
in 1934 (Greenshidds 1935). This model can also be developed

4.4 Experiments And Observations

This section is devoted to the presentation and discussion of
experiments that have been carried out in an effort to ascertain
whether car following models approximate single lane traffic
characteristics. These experiments are organized into two
distinct categories.

The first of these is concerned with comparisons between car
following models and detailed measurements of the variables
involved in the driving situation where one vehicle follows
another on an empty roadway. These comparisons lead to a
quantitative measure of car following model estimates for the
specific parameters involved for the traffic facility and vehicle
type used.

The second category of experiments are those concerned with
the measurement of macroscopic flow characteristics: the study
of speed, concentration, flow and their inter-relationships for
vehicle platoons and traffic environments where traffic is
channdled inasinglelane. In particular, the degree to which this
type of data fits the analytica relationships that have been

considering the perceptua factors that are related to the car
following task (Pipes and Wojcik 1968; Fox and Lehman 1967,
Michaels 1963). Aswas discussed earlier, the case for m= 0,
(=1 generates asteady-state relation that can be developed bya
fluid flow analogy to traffic (Greenberg 1959) and led to the
reexamination of car following experiments and the hypothesis
thet drivers do not have a constant gain factor to a given relative-
speed stimulus but rather thet it varies inversely with the vehicle
spacing, i.e, m=0, { =1 (Herman et a. 1959). A generalized
equation for steady-state flow (Drew 1965) and subsequently
tested on the Gulf Freeway in Houston, Texas led to a model
wherem=0and ¢ = 3/2.

As noted earlier, consideration of a "free-speed” near low
concentretions led to the proposal and subsequent testing of the
modd m=1, (=2 (Edie1961). Yetanother model, m=1,
¢ =3resulted from analysis of data obtained on the Eisenhower
Expressway in Chicago (Drake et a. 1967). Further analysis of
thismodd together with observations suggest that the sensitivity
coefficient may take on different values above a lane flow of
about 1,800 vehicles/hr (May and Keller 1967).

derived from car following models for steady-state flow are
examined.

Finally, the degree to which any specific model of the type
examined in the previous section is capable of representing a
consistent framework from both the microscopic and
Macroscopic viewpoints is examined.

4.4.1 Car Following Experiments

The first experiments which attempted to make a preliminary
evaluation of thelinear car following model were performed a
number of decades ago (Chandler et a. 1958; Kometani and
Sasaki 1958). In subsequent years a number of different tests
with varying objectives were performed using two vehicles,
three vehicles, and buses. Most of these tests were conducted on
test track facilities and in vehicular tunnels.

4-22
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In these experiments, inter-vehicle spacing, relative speed, speed
of the following vehicle, and acceleration of the following
vehicles were recorded simultaneously together with a clock
signal to assure synchronization of each variable with every

other.

These car following experiments are divided into six specific
categories as follows:

1)

2)

3)

4)

Preliminary Test Track Experiments. The first
experimentsin car following were performed by (Chandler
et a. 1958) and were carried out in order to obtain
estimates of the parameters in the linear car following
model and to obtain apreliminary evaluation of this model.
Eight male drivers participated in the study which was
conducted on aone-mile test track facility.

Vehicular Tunnel Experiments. To further establish the
validity of car following models and to establish estimates,
the parameters involved in real operating environments
where the traffic flow characteristics were well known, a
series of experiments were carried out in the Lincoln,
Holland, and Queens Mid-Town Tunnels of New Y ork
City. Ten different driverswere used in collecting 30 test
runs.

Bus Following Experiments. A series of experiments
were performed to determine whether the dynamical
characteristics of a traffic stream changes when it is
composed of vehicles whose performance measures are
significantly different than those of an automobile. They
were aso performed to determine the validity and measure
parameters of car following models when applied to heavy
vehicles. Using a4 kilometer test track facility and 53-
passenger city buses, 22 drivers were studied.

Three Car Experiments. A series of experiments were
performed to determine the effect on driver behavior when
there is an opportunity for next-nearest following and of
following the vehicle directly ahead. The degree to which
adriver uses the information that might be obtained from
a vehicle two ahead was also examined. The relative
pacings and the relative speeds between the first and third
vehicles and the second and third vehicles together with
the speed and acceleration of the third vehicle were
recorded.

5)

Miscellaneous Experiments. Severa additiona car
following experiments have been performed and reported
on as follows:

a) Kometani and Sasaki Experiments. Kometani and
Sasaki conducted and reported on a series of experiments
that were performed to evaluate the effect of an additional
term in the linear car following equation. This term is
related to the acceleration of the lead vehicle. In
particular, they investigated amodel rewritten herein the
following form:

X (trT) = AL %, O] +yX()  (4.58)

This equation attempts to take into account a particular
driving phenomenon, wherethe driver in aparticular state
realizes that he should maintain a non-zero acceleration
even though the relative speed has been reduced to zero or
near zero. This situation was observed in several casesin
tests carried out in the vehicular tunnels - particularly
when vehicleswere coming to a stop. Equation 4.58
above dlowsfor anon-zero acceleration when the relative
speed is zero. A value of ¥ near one would indicate an
attempt to nearly match the accel eration of the lead driver
for such cases. Thisdoes not imply that drivers are good
estimators of relative acceleration. The conjecture hereis
that by pursuing the task where the lead driver is
undergoing a constant or near constant acceleration
maneuver, the driver becomes aware of this qualitatively
after nullifying out relative speed - and thereby shifts the
frame of reference. Such cases have been incorporated
into models simulating the behavior of bottlenecks in
tunnel traffic (Helly 1959).

b) Experiments of Forbes et al. Several experiments
using three vehicle platoons were reported by Forbes

et d. (1957). Herealead vehicle was driven by one of the
experimenters while the second and third vehicles were
driven by subjects. At predetermined locations along the
roadway relatively severe acceleration maneuvers were
executed by the lead vehicle. Photographic equipment
recorded these events with respect to this moving
reference together with speed and time. From these
recordings speeds and spacings were calculated as a
function of time. These investigators did not fit this data
to car following models. However, apartial set of this data
was fitted to vehicle following models by another
investigator (Helly 1959). Thislatter set consisted of six
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tests in al, four in the Lincoln Tunnel and two on an
open roadway.

c) Ohio Sate Experiments. Two different sets of
experiments have been conducted a Ohio State
University. Inthefirst set a series of subjects have been
studied using a car following simulator (Todosiev 1963).
An integral part of the simulator is an analog computer
which could program the lead vehicle for many different
driving tasks. The computer could aso simulate the
performance characteristics of different following vehicles.
These experiments were directed toward understanding the
manner in which the following vehicle behaves when the
lead vehicle moves with constant speed and the
measurement of driver thresholds for changes in spacing,
relative speed, and acceleration. The second set of
experiments were conducted on a level two-lane state
highway operating at low traffic concentrations (Hankin
and Rockwell 1967). In these experiments the purpose
was "to develop an empirically based model of car
following which would predict a following car's
acceleration and change in acceleration as a function of
observed dynamic relationships with thelead car." Asin
the earlier car following experiments, spacing and relative
speed were recorded as well as speed and acceleration of
the following vehicle.

d) Sudies by Constantine and Young. These studies
were carried out using motorists in England and a
photographic system to record the data (Constantine and
Young 1967). The experiments are interesting from the
vantage point that they aso incorporated a second
photographic system mounted in the following vehicle and
directed to the rear so that two sets of car following data
could be obtained simultaneously. The latter set collected
information on an unsuspecting motorist.  Although
accuracy is not sufficient, such a system holds promise.

4.4.1.1 Analysis of Car Following Experiments

The andysis of recorded information from a car following
experiment is generally made by reducing the data to numerical
values at equal time intervals. Then, a correlation analysis is
carried out using the linear car following model to obtain
estimates of the two parameters, A and T. With the data in
discrete form, thetime lag , T, aso takes on discrete values. The
time lag or response time associated with a given driver is one

for which the correlation coefficient is a maximum and typically
fallsin the range of 0.85 to 0.95.

The results from the preliminary experiments (Chandler et al.
1958) are summarized in Table 4.1 where the estimates are
given for A, their product; C = AT, the boundary value for
asymptotic Sability; average spacing, < S>; and average speed,
<U >. The average value of the gain factor is 0.368 sec*. The
average value of AT is close to 0.5, the asymptotic stability
boundary limit.

Table 4.1 Results from Car-Following Experiment

—— ———
I|Driver | A <U> | <S> | )\T|

1 0.74 sec* 19.8 36 1.04
m/sec m

2 0.44 16 36.7 0.44

3 0.34 20.5 38.1 1.52

5 0.38 16.8 26.7 0.65

6 0.17 18.1 61.1 0.19

I 4 0.32 22.2 34.8 0.48

7 0.32 18.1 55.7 0.72

I 8 0.23 18.7 43.1 0.47
|

Using the vaues for A and the average spacing <S > obtained for
each subject avaue of 12.1 mysec (44.1 km/h) is obtained for an
estimate of the constant a, , (Herman and Potts 1959). This
latter estimate compares the value A for each driver with that
driver's average spacing, <S>, since each driver isin somewhat
different driving state. Thisisillustrated in Figure 4.15. This
approach attempts to take into account the differencesin the
estimates for the gain factor A or a,,, obtained for different
drivers by attributing these differences to the differences in their
respective average spacing. An dternate and more direct
gpproach carries out the correlation analysis for this model using
an equation which isthe discrete form of Equation 4.38 to obtain
adirect estimate of the dependence of the gain factor on spacing,

).

d
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Figure 4.15
Sensitivity Coefficient Versus the Reciprocal of the Average Vehicle Spacing (Gazis et al. 1959).

Vehicular Tunnel Experiments. Vehicular tunnels usually have
roadbeds that are limited to two lanes, one per direction.
Accordingly, they consist of single-lane traffic where passing is
prohibited. In order to investigate the reasonableness of the non-
linear model a series of tunnel experiments were conducted.
Thirty test runs in al were conducted: sixteen in the Lincoln
Tunnd, ten in the Holland Tunnel and four in the Queens Mid-
Town Tunnel. Initialy, values of the parameters for the linear
model were obtained, i.e,, A = a,,and T. These results are
shown in Figure 4.16 where the gain factor, A= a,, versus the
time lag, T, for al of the test runs carried out in the vehicular
tunnels. The solid curve divides the domain of this two
parameter field into asymptotically stable and unstable regions.

Itisof interest to note that in Figure 4.16 that many of the drivers
fdl into the unstable region and that there are drivers who have
relatively large gain factors and time lags. Drivers with
relatively slow responses tend to compensatingly have fast
movement times and tend to apply larger brake peda forces
resulting in larger decelerations.

Such drivers have been identified, statistically, as being involved
more frequently in "struck-from-behind accidents® (Babarik
1968; Brill 1972). Figures4.17 and 4.18 graph the gain factor

versusthe reciprocal of the average vehicle spacing for the tests
conducted in the Lincoln and Holland tunnels, respectively.
Figure 4.17, the gain factor, A, versus the reciprocd of the
average spacing for the Holland Tunnel tests. The straight line
isa"least-squares’ fit through the origin. The slope, whichisan
estimate of a,,, and equals 29.21 km/h. Figure 4.18 graphs the
gain factor, A, versus the reciprocal of the average spacing for
the Lincoln Tunnel tests. The straight lineis a"least-squares” fit
through the origin. These results yield characteristic speeds,
a, o , Which are within = 3kmv/h for these two similar facilities.
Yet these small numeric differences for the parameter a,
properly reflect known differences in the macroscopic traffic
flow characteristics of these facilities.

The analysis was also performed using these test data and the
non-linear reciprocal spacing model. The results are not
strikingly different (Rothery 1968). Spacing does not change
significantly within any one test run to provide a sensitive
mesasure of the dependency of the gain factor on inter-vehicular
spacing for any given driver (See Table 4.2). Where the
variation in spacings wererelatively large (e.g., runs 3, 11, 13,
and 14) the results tend to support the spacing dependent model.
Thistime-dependent analysis has a so been performed for seven
additiond functions for the gain factor for the same fourteen
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Table 4.2
Comparison of the Maximum Correlations obtained for the Linear and Reciprocal Spacing Models for the Fourteen
Lincoln Tunnel Test Runs

I E—— — I —— —
I| Number | Moo Mo | <S> (m) | oS(m)| INumber foo Mo <S>(m) [ aS(m) I
I 1 0.686 0.459 134 4.2 I I 8 0.865 0.881 19.9 34 I
I 2 0.878 0.843 155 3.9 I I 9 0.728 0.734 7.6 1.8 I
I 3 0.77 0.778 20.6 5.9 I I 10 0.898 0.898 10.7 2.3 I
I 4 0.793 0.748 10.6 2.9 I I 11 0.89 0.966 26.2 6.2 I
I 5 0.831 0.862 12.3 3.9 I I 12 0.846 0.835 18.5 1.3 I
I 6 0.72 0.709 135 2.1 I I 13 0.909 0.928 18.7 8.8 I
e el | e o oo Jeer lue

1.00,
—~ 0.75}
(%)
?
— 0.50}
<
0.25}
0 05 1.0 15 2.0
T (sec)
Figure 4.16

Gain Factor, A, Versus the Time Lag, T, for All of the Test Runs (Rothery 1968).
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Figure 4.17
Gain Factor, A, Versus the Reciprocal of the
Average Spacing for Holland Tunnel Tests (Herman and Potts 1959).
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Gain Factor, A,Versus the Reciprocal of the
Average Spacing for Lincoln Tunnel Tests (Herman and Potts 1959).
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little difference from one model to the other. There are definite
trends however. If one graphs the correlation coefficient for a
given {, say (=1 versus m; 13 of the cases indicate the best fits
arewithm=0 or 1. Three models tend to indicate margina
superiority; they are those given by (¢=2; m=1), (¢=1; m=0) and
(¢=2; m=0).

Bus Following Experiments. For each of the 22 drivers tested,
the time dependent correlation analysis was carried out for the
linear model (¢=0; m=0), the reciprocal spacing model (¢=1,
m=0), and the speed, reciprocal-spacing-squared model (1=2;
m=1). Resultssimilar to the Tunnd analysis were obtained: high
correlations for aimost al drivers and for each of the three
models examined (Rothery et al. 1964).

The correlation analysis provided evidence for the reciprocal
spacing effect with the correlation improved in about 75 percent

Table 4.3

of the cases when that factor is introduced and this model (=1,
m=0) provided the best fit to the data. The principle results of
the anadlysis are summarized in Figure 4.19 where the sensitivity
coefficient a , versus the time lag, T, for the bus following
experiments are shown. All of the data points obtained in these
results fall in the asymptotically stable

region, whereas in the previous automobile experiments
approximately half of the points fell into thisregion. In Figure
4.19, the sensitivity coefficient, a,,, versus thetime lag, T, for
the bus following experiments are shown. Some drivers are
represented by more than one test. The circles are test runs by
driverswho aso participated in the ten bus platoon experiments.
The solid curve divides the graph into regions of asymptotic
stability and instability. The dashed lines are boundaries for the
regions of local stability and instability.

Maximum Correlation Comparison for Nine Models, a,,,, for Fourteen Lincoln Tunnel Test Runs.

,l

Driver | r(0,0) | r(1,-1) | r(1,0) | r(1,1) | r(1,2) | r(2,-1) | r(2,0) | r(2,1) | r(2,2) |
I 1 0.686 0.408 0.459 0.693 0.721 0.310 0.693 0.584 0.690 I
I 2 0.878 0.770 0.843 0.847 0.746 0.719 0.847 0.827 0.766 I
I 3 0.770 0.757 0.778 0.786 0.784 0.726 0.786 0.784 0.797 I
I 4 0.793 0.730 0.748 0.803 0.801 0.685 0.801 0.786 0.808 I
I 5 0.831 0.826 0.862 0.727 0.577 0.805 0.728 0.784 0.624 I
I 6 0.720 0.665 0.709 0.721 0.709 0.660 0.720 0.713 0.712 I
I 7 0.640 0.470 0.678 0.742 0.691 0.455 0.745 0.774 0.718 I
I 8 0.865 0.845 0.881 0.899 0.862 0.818 0.890 0.903 0.907 I
I 9 0.728 0.642 0.734 0.773 0.752 0.641 0.773 0.769 0.759 I
I 10 0.898 0.890 0.898 0.893 0.866 0.881 0.892 0.778 0.865 I
I 11 0.890 0.952 0.966 0.921 0.854 0.883 0.921 0.971 0.940 I
I 12 0.846 0.823 0.835 0.835 0.823 0.793 0.835 0.821 0.821 I
I 13 0.909 0.906 0.923 0.935 0.927 0.860 0.935 0.928 0.936 I
I 14 0.761 0.790 0.790 0.771 0.731 0.737 0.772 0.783 0.775 I
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Note: For bus following experiments - Some drivers are represented by more than onetest. Thecirclesaretest runs by drivers
who also participated in the ten bus platoons experiments. The solid curve divides the graph into regions of asymptotic stability
and instability. The dashed lines are boundaries for the regions of local stability and instability.

Figure 4.19
Sensitivity Coefficient, a,,,Versus the Time Lag, T (Rothery et al. 1964).

Theresults of alimited amount of data taken in the rain suggest
thet drivers operate even more stably when confronted with wet
road conditions. These results suggest that buses form a highly
stable stream of traffic.

Thetime-independent analysis for the reciprocal-spacing model
and the speed-reciprocal-spacing-squared model uses the time
dependent sensitivity coefficient result, a,, , the average speed,
<U>, and the average spacing, <S>, for eachof the car
following test cases in order to form estimates of a,,and a,,,
i.e. by fitting

T
LS
and
. <U>
Qo = Ay o2

respectively (Rothery et al. 1964).

Figures 4.20 and 4.21 graph the values of a,, for all test runs
versus<S>tand <U> <S> respectively. In Figure 4.20, the
sensitivity coefficient versus the reciprocal of the average
spacing for each bus following experiment, and the "least-
sguares' sraight line are shown. The slope of this regression is
an estimate of the reciprocal spacing sensitivity coefficient. The
solid dots and circles are points for two different test runs.

In Figure 4.21, the sensitivity coefficient versus theratio of the
average speed to the square of the average spacing for each bus
following experiment and the "least-square”" straight line are
shown. The dope of this regression is an estimate of the speed-
reciprocal spacing squared sensitivity coefficient. The solid dots
and circles are data points for two different test runs. The slope
of the straight line in each of these figures give an estimate of
their respective sensitivity coefficient for the sample population.
For the reciprocal spacing model the results indicate an estimate
fora ,=52.8 + .05 m/sec. (58 * 1.61 knvh) and for the speed-
reciprocal spacing squared model a,, = 54.3 + 1.86 m. The
errors are one standard deviation.
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Note: The sensitivity coefficient versus the reciprocal of the average spacing for each bus following experiment. The least squares
graight line is shown. The slope of thisregression is an estimate of the reciprocal spacing sensitivity coefficient. The solid dots and
circlesare data points for two different test runs.

Figure 4.20
Sensitivity Coefficient Versus the Reciprocal of the Average Spacing (Rothery et al. 1964).
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Note: The sensitivity coefficient versus the ratio of the average speed to the square of the average spacing for each bus following
experiment. The least squares straight lineis shown. The slope of thisregression is an estimate of the speed-reciprocal spacing
sgquared sensitivity coefficient. The solid dots and circles are data points for two different test runs.

Figure 4.21
Sensitivity Coefficient Versus the Ratio of the Average Speed (Rothery et al. 1964).
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Three Car Experiments. These experiments were carried out in
an effort to determine, if possible, the degree to which adriver
is influenced by the vehicle two ahead, i.e, next nearest
interactions (Herman and Rothery 1965). The data collected in
these experiments are fitted to the car following model:

).<n+2(t+T) = )bl[xn+1(t)7xn+2(t)] +)”2[Xn(t)7xn+2(t)] (4.61)

This equation is rewritten in the following form:

oea1T) = 2D, 1(0 K201 +81%,0 %01} (462

where
8 = Afh,

A linear regression anaysisis then conducted for specific values
of the parameter 6. For the case 6 = 0 there is nearest neighbor
coupling only and for 6 >> 1 there is next nearest

neighbor coupling only. Using eight specific values of & (0,
0.25, 0.50, 1, 5, 10, 100, and «~) and a mean response time of
1.6 sec, a maximum correlation was obtained when 6 = 0.
However, if response times are alowed to vary, modest
improvements can be achieved in the correlations.

While next nearest neighbor couplings cannot be ruled out
entirely from this study, the results indicate thet there are no
significant changes in the parameters or the correlations when
following two vehicles and that the stimulus provided by the
nearest neighbor vehicle, i.e, the 'lead’ vehicle, is the most
significant. Models incorporating next nearest neighbor
interactions have also been used in simulation models (Fox and
Lehman 1967). Theinfluence of including such interactionsin
simulations are discussed in detail by those authors.

Miscellaneous Car Following Experiments. A brief discussion
of the results of three additional vehicle following experiments
are included here for completeness.

The experiments of Kometani and Sasaki (1958) were car
following experiments where the lead vehicle's task was closely
approximated by: "accelerate at a constant rate from a speed u to
aspeed U' and then decelerate at a constant rate from the speed
u'toagpeed u." Thistype of task is essentialy ‘closed' since the

externa situation remains constant. The task does not change
appreciably from cycle to cycle. Accordingly, response times
can be reduced and even canceled because of the cyclic nature
of the task.

By the driver recognizing the periodic nature of the task or that
the motion is sustained over a period of time (~ 13 sec for the
acceleration phase and = 3 sec for the deceleration phase) the
driver obtains what is to him/her advanced information.

Accordingly, the analysis of these experiments resulted in short
responsetimes = 0.73 sec for low speed (20-40 km/h.) tests and
~ 0.54 sec for high speed (40-80 km/h.) tests. The results also
produced significantly large gain factors. All of the values
obtained for each of the driversfor AT, exceeded the asymptotic
stability limit. Significantly better fits of the data can be made
using amodel which includesthe acceleration of the lead vehicle
(See Equation 4.58) relative to the linear model which does not
contain such aterm. Thisis not surprising, given the task of
following the lead vehicle's motion as described above.

A partia set of the experiments conducted by Forbes et a.
(1958) were examined by Helly (1959), who fitted test runsto
the linear vehicle model, Equation 4.41, by varying A and T to
minimize the quantity:

N
j; [XPP(.0t) — %™ (j.01)]2 (4.63)

where the data has been quantitized at fixed increments of dt,
Nt is the test run duration, X su®® (j.dt) is the experimentally
measured values for the speed of the following vehicle at time
jét, and x,™"(j.4t) isthetheoretical estimate for the speed of
the following vehicle as determined from the experimentally
mesasured vaues of the acceleration of the following vehicle and
the speed of the lead vehicle using the linear model. These
results are summarized in Table 4.4.

Ohio State Smulation Studies. From a series of experiments
conducted on the Ohio State simulator, a relatively simple car
following model has been proposed for steady-state car
following (Barbosa 1961). The model is based on the concept
of driver thresholds and can be most easily described by means
of a'typical’ recording of relative speed versus spacing as
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Table 4.4 Results from Car Following Experiments

1
I Driver # T Ay M max I
I 1 1.0 0.7 0.86 I
I 2 0.5 1.3 0.96 I
I 3 0.6 0.8 0.91 I
I 4 0.5 1.0 0.87 I
I 5 0.7 1.1 0.96 I
I 6 0.5 1.0 0.86
————————————

shown in Figure 4.22. At point "1," it is postulated that the
driver becomes aware that he is moving at a higher speed than
the lead vehicle and makes the decision to decelerate in order to
avoid having either the negative relative speed becoming too

Relative Speed, u

large or the spacing becoming too small. At point "A," after a
time lag, the driver initiates this deceleration and reduces the
relative speed to zero. Since drivers have a threshold level
below which relative speed cannot be estimated with accuracy,
the driver continues to decelerate until he becomes aware of a
positive relative speed because it either exceeds the threshold at
this spacing or because the change in spacing has exceeded its
threshold level. At point "2," the driver makes the decision to
accderatein order not to drift away from the lead vehicle. This
decisonis executed at point "B" until point "3" is reach and the
cycleismore or lessrepeated. It was found that the arcs, e.g.,
AB, BC, etc. are "approximately parabolic® implying that
accelerations can be considered roughly to be constant. These
accelerations have been studied in detail in order to obtain
estimates of relative speed thresholds and how they vary with
respect to inter-vehicle spacing and observation times (Todosiev
1963). Theresultsare summarized in Figure 4.23. Thisdriving
task, following a lead vehicle traveling at constant speed, was
also studied using automobilesin adriving situation so that the
pertinent data could be collected in a closer-to-redity situation
and then analyzed (Rothery 1968).

s(meters)

Figure 4.22
Relative Speed Versus Spacing (Rothery 1968).
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Relative Speed Thresholds Versus Inter-Vehicle Spacing for
Various Values of the Observation Time. (Rothery 1968).

Theinteresting element in these latter resultsis that the character
of the motion as exhibited in Figure 4.22 is much the same.
However, the range of relative speeds at a given spacing that
were recorded are much lower than those measured on the
smulator. Of coursethe perceptua worlds in these two tests are
consderably different. The three dimensional aspects of the test
track experiment alone might provide sufficient additional cues
to limit the subject variablesin contrast to the two dimensional
CRT screen presented to the ‘driver’ in the simulator. In any
case, thresholds estimated in driving appear to be less than those
measured via simulation.

Asymmetry Car Following Sudies. One car following
experiment was studied segment by segment using a model
where the stimulus included terms proportional to deviations
from the mean inter-vehicle spacing, deviations from the mean
speed of the lead vehicle and deviations from the mean speed of
the following car (Hankin and Rockwell 1967). An interesting
result of the analysis of this model is that it implied an
asymmetry in the response depending on whether the relative

speed stimulusis positive or negative. This effect can be taken
into account by rewriting our basic model as:

¥t T) = 41X (0 %, (0] (4.64)

where A, = A, or A_depending on whether the relative speed is
grester or less than zero.

A resxamination of about forty vehicle following tests that were
carried out on test tracks and in vehicular tunnels indicates,
without exception, that such an asymmetry exists (Herman and
Rothery 1965). The average value of A_is =10 percent greater
than A,. The reason for this can partly be attributed to the fact
that vehicles have considerably different capacities to accelerate
and decelerate. Further, the degree of response is likely to be
different for the situations where vehicles are separating
compared to those where the spacing is decreasing. This effect
creates a specia difficulty with car following models as is
discussed intheliterature (Newell 1962; Newell 1965). One of
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the principal difficulties is that in a cyclic change in the lead
vehicle's speed - accelerating up to a higher speed and then
returning to theinitial speed, the asymmetry in acceleration and
deceleration of the following car prevents return to the origina
spacing. With n such cycles, the spacing continues to increase
thereby creating a drifting apart of the vehicles. A relaxation
process needs to be added to the models that allows for this
asymmetry and also allows for the return to the correct spacing.

4.4.2 Macroscopic Observations:
Single Lane Traffic

Several data collections on single lane traffic have been carried
out with the specific purpose of generating alarge sample from
which accurate estimates of the macroscopic flow characteristics
could be obtained. With such a data base, direct comparisons
can be made with microscopic, car following estimates -
particularly when the car following results are obtained on the
same facility as the macroscopic datais collected. One of these
data collections was carried out in the Holland Tunnel (Edie et
al. 1963). The resulting macroscopic flow data for this 24,000
vehicle sampleis shown in Table 4.5.

The data of Table 4.5 is al'so shown in graphical form, Figures
4.24 and 4.25 where speed versus concentration and flow versus
concentration are shown, respectively. In Figure 4.24, speed
versus vehicle concentration for data collected in the Holland
Tunnd isshown where each data point represents a speed class
of vehicles moving with the plotted speed + 1.61 m/sec. In
Figure 4.25, flow versus vehicle concentration is shown; the
solid points are the flow values derived from the speed classes
assuming steady-state conditions. (See Table 4.5 and Figure
4.24.) Alsoincluded in Figure 4.25 are one-minute average flow
values shown as encircled points. (See Edieet al. 1963). Using
this macroscopic data set, estimates for three sensitivity
coefficients are estimated for the particular car following models
that appear to be of significance. Theseare: a,, a,,, and a,,.
These are sometimes referred to as the Reciprocal Spacing
Model, Edie's Model, and Greenshields' Model, respectively.
Thenumerica values obtained are shown and compared with the
microscopic estimates from car following experiments for these
same parameters.

The associated units for these estimates are ft/sec, ft?/sec, and
miles/car, respectively. As illustrated in this table, excellent
agreement is obtained with the reciprocal spacing model. How
well these models fit the macroscopic data is shown in Figure
4.26, where the speed versus vehicle concentration data is
graphed together with the curves corresponding to the steady-
state speed-concentration relations for the various indicated
models. The data appearsin Figure 4.24 and 4.25.

Thecurves areleast square estimates. All three models provide
a good estimate of the characteristic speed (i.e., the speed at
optimum flow, namely 19, 24, and 23 mi/h for the reciprocal
spacing, reciproca spacing squared, and speed reciprocal
spacing squared models, respectively).

Edie's original motivation for suggesting the reciprocal spacing
speed modd was to attempt to describe low concentration, non-
congested traffic. The key parameter in this model is the "mean
free speed”, i.e, the vehicular stream speed as the concentration
goes to zero. Theleast squares estimate from the macroscopic
datais 26.85 meters/second.

Edie dso compared this model with the macroscopic datain the
concentration range from zero to 56 vehicles/kilometer; the
reciprocal spacing model was used for higher concentrations
(Edie 1961). Of course, the two mode fit is better than any one
model fitted over the entire range, but marginaly (Rothery
1968). Even though the improvement is margind there is an
apparent discontinuity in the derivative of the speed-
concentration curve. This discontinuity is different than that
which had previously been discussed in the literature. It had
been suggested that there was an apparent break in the flow
concentration curve near maximum flow where the flow drops
suddenly (Edie and Foote 1958; 1960; 1961). That type of
discontinuity suggests that the u-k curveis discontinuous.

However, the data shown in the above figures suggest that the
curve is continuous and its derivative is not. If there is a
discontinuity in the flow concentration relation near optimum
flow it is considerably smaller for the Holland Tunnel than has
been suggested for the Lincoln Tunnel. Nonetheless, the
apparent discontinuity suggests that car following may be
bimodal in character.
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Table 4.5 Macroscopic Flow Data

Speed Average Spacing Concentration Number of
(m/sec) (m) (veh/km) Vehicles

I 2.1 123 80.1 22 I
I 2.7 12.9 76.5 58 I
I 3.3 14.6 67.6 98 I
I 3.9 15.3 64.3 125 I
I 45 17.1 57.6 196 I
I 5.1 17.8 55.2 293 I
I 5.7 18.8 52.6 436 I
I 6.3 19.7 50 656 I
I 6.9 20.5 48 865 I
I 7.5 22.5 43.8 1062 I
I 8.1 23.4 42 1267 I
I 8.7 25.4 38.8 1328 I
I 9.3 26.6 37 1273 I
I 9.9 27.7 35.5 1169 I
I 105 30 32.8 1096 I
I 11.1 32.2 30.6 1248 I
I 11.7 33.7 29.3 1280 I
I 123 33.8 26.8 1162 I
I 12.9° 432 22.8 1087 I
I 135 43 22.9 1252 I
I 14.1 47.4 20.8 1178 I
I 14.7 54.5 18.1 1218 I
I 15.3 56.2 175 1187 I
I 15.9 60.5 16.3 1135 I
I 16.5 715 13.8 837 I
I 17.1 75.1 13.1 569 I
I 17.7 84.7 11.6 478 I
I 18.3 77.3 12.7 291 I
I 18.9 88.4 11.1 231 I
I 195 100.4 9.8 169 I
I 20.1 102.7 9.6 55 I

20.7 120.5 8.1 56 I
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Each data point represents a speed class of vehicles moving with the plotted speed + 1 ft/sec (See Table 4.4).

Figure 4.24
Speed Versus Vehicle Concentration (Edie et al. 1963).
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The solid points are the flow values derived from the speed classes assuming steady-state condition. Also included in

Figure 4.25 are one minute average flow values shown as encircled points.

Figure 4.25
Flow Versus Vehicle Concentration (Edie et al. 1963).
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Figure 4.26

Speed Versus Vehicle Concentration (Rothery 1968).

Table 4.6
Parameter Comparison
(Holland Tunnel Data)

]
I Microscopic Macroscopic I
Parameters Estimates Estimates
I a, 26.8 27.8 I
I a, , 0.57 0.12
ay, (123)* (54)*
L

A totally different approach to modeling traffic flow variables
which incorporates such discontinuities can be found in the
literature. Navin (1986) and Hall (1987) have suggested that
catastrophe theory (Thom 1975; Zeeman 1977) can be used as
a vehicle for representing traffic relationships. Specifically,
Navin followed the two regime approach proposed by Edie and
cited above and first suggested that traffic relations can be
represented using the cusp catastrophe. A serious attempt to
apply such an gpproach to actud traffic datain order to represent

flow variables without resorting to using two different
expressions or two different sets of parameters to one expression
has been made by Hall (1987). More recently, Acha-Daza and
Hall (1994) have reported an analysis of freeway data using
catastrophe theory which indicates that such an approach can
effectively be applied to traffic flow. Macroscopic data has also
been reported on single lane bus flow. Here platoons of ten
buses were studied (Rothery et al. 1964).

Platoons of buses were used to quantify the steady-state stream
properties and stability characteristics of single lane bus flow.
Ideally, long chains of buses should be used in order to obtain
the bulk properties of the traffic stream and minimize the end
effects or eliminate this boundary effect by having the lead
vehicle follow the last positioned vehicle in the platoon using a
circular roadway. These latter type of experiments have been
carried out at the Road Research Laboratory in England
(Wardrop 1965; Franklin 1967).

In the platoon experiments, flow rates, vehicle concentration,
and speed datawere obtained. The average values for the speed
and concentration data for the ten bus platoon are shown in
Figure 4.28 together with the numerical value for the parameter
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Flow Versus Concentration for the Lincoln and Holland Tunnels.
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Average Speed Versus Concentration
for the Ten-Bus Platoon Steady-State Test Runs (Rothery 1968).
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a,,= 53 kmhwhichisto be compared to that obtained from the
two bus following experiments discussed earlier namely, 58
km/h. Given these results, it is estimated that a single lane of
standard size city buses is stable and has the capacity of over
65,000 seated passengers’hour. An independent check of this
result has been reported (Hodgkins 1963). Headway times and

4.5 Automated Car Following

All of thediscussion in this chapter has been focused on manual
car following, onwhat drivers do in following one or more other
vehicles on asingle lane of roadway. Paraleling these studies,
research has a so focused on developing controllers that would
automatically mimic this task with specific target objectivesin
mind.

At the 1939 Worlds Fair, General Motors presented
conceptually such a vision of automated highways where
vehicleswere controlled both longitudinally (car following) and
laterally thereby freeing drivers to take on more leisurely
activities as they moved at freeway speeds to their destinations.
In the intervening years considerable effort has been extended
towards the realization of this transportation concept. One prime
motivation for such systemsisthat they are envisioned to provide
more efficient utilization of facilities by increasing roadway
capacity particularly in areas where constructing additional
roadway lanesis undesirable and or impractical, and in addition,
might improve safety levels. The concept of automated
highways is one where vehicles would operate on both
conventional roads under manual control and on specialy
instrumented guideways under automatic control. Herewe are
interested in automatic control of the car following task. Early
research in this arena was conducted on both a theoretical and
experimental basis and evduated at General Motors Corporation
(Gardels 1960; Morrison 1961; Flory et al. 1962), Ohio State
University (Fenton 1968; Bender and Fenton 1969; Benton
et d. 1971; Bender and Fenton 1970), Japan Governmental

speed of clusters of three or more buses on seven different
highways distributed across the United States were measured
and concluded that a maximum flow for buses would be
approximately 1300 buses’hour and that this would occur at
about 56 knvh.

Mechanical Laboratory (Oshima et al. 1965), the Transportation
Road Research Laboratory (Giles and Martin 1961; Cardew
1970), Ford Motor Corporation (Cro and Parker 1970) and the
Japanese Automobile Research Institute (1to 1973). During the
past severa decadesthree principa research studiesin this arena
stand out: a systems study of automated highway systems
conducted at General Motors from 1971-1981, a long-range
program on numerous aspects of automated highways conducted
a The Ohio State University from 1964-1980, and the Program
on Advanced Technology for the Highway (PATH) at the
University of California, Berkeley from about 1976 to the
present. Three overviews and detailed references to milestones
of these programs can be found in the literature: Bender (1990),
Fenton and Mayhan (1990), and Shladover et al. (1990),
respectively.

The car following elements in these studies are focused on
developing contrallers that would replace driver behavior, carry
out the car following task and would setisfy one or more
performance and/or safety criteria.  Since these studies have
essentially been theoretical, they have by necessity required the
difficult task of modeling vehicle dynamics. Given a controller
for the driver element and a realistic moddl representation of
vehicle dynamics a host of design strategies and issues have been
addressed regarding inter-vehicular spacing control, platoon
configurations, communication schemes, measurement and
timing requirements, protocals, etc. Experimental verifications
of these elements are underway at the present time by PATH.
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4.6 Summary and Conclusions

Historically, the subject of car following has evolved over the
past forty years from conceptua ideas to mathematical model
descriptions, analysis, model refinements resulting from
empirical testing and evaluation and finally extensions into
advanced automatic vehicular control systems.  These
developments have been overlapping and interactive. There
have been ebbs and flows in both the degree of activity and
progress made by numerous researchers that have been involved
in the contributions made to date.

The overal importance of the devel opment of the subject of car
following can be viewed from five vantage points, four of which
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