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LINEAR PROGRAMMING


Sources:


-Introduction to linear optimization (Bertsimas,

Tsitsiklis)


-Nathaniel Grier’s paper


-1.224 previous material




Outline


1. Modeling problems as linear 
programs 

2. Solving linear programs
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Outline


1. Modeling problems as linear programs

– What is a linear Program 
– Formulation 
– Set Notation Review 
– Example: Transit Ridership 
– Standard Form of an LP 
– Linearity

– Examples 
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What is a Linear Program (LP)? 


1.	 Objective Function 
–	 summarizes objective of the problem (MAX, MIN) 

2.	 Constraints of problem: 
–	 limitations placed on the problem; control allowable


solutions

–	 Problem statement: ‘given….’, ‘must ensure…’, ‘subject to’ 
–	 Equations or inequalities 

3.	 Decision Variables 
–	 quantities, decisions to be determined 
–	 multiple types (real numbers, non-negative, integer, binary) 
–	 In an LP, the decision variables are real numbers 
–	 Choice of decision variables will determine difficulty in 

formulating and solving the problem 
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Set Notation Review


Set:collection of distinct objects

R: set of real numbers
Z: set of integers
0: empty set 
Superscript +: non-negative elements of a set 
∈ : ‘is an element of’ 
{ }  : ‘the set containing’ (members of the set are between    

brackets) 
: or | : ‘such that ’  example:{x ∈ S : x ≥ 0}
∃ :’there exists’ 
∀ : ‘for all’ 

12/31/2003 Barnhart  1.224J 7 



Example: Transit Ridership 

•	 A transit agency is performing a review of the service it 

provides. It has decided to measure its overall effectiveness 
in terms of the total number of riders it serves. The agency 
operates a number of modes of transport. The table shows 
the average number of riders generated by each trip (by 
mode) and the cost of each trip (by mode) 

Mode Heavy 
Rail 

Light 
Rail 

BRT Bus 

Ave. Ridership per trip (ri) 400 125 60 40 
Ave. Cost per trip (ci) 200 80 40 30 

• Give a formulation of the problem to maximize the total number of 

riders the agency services given a fixed daily budget of $5,000.
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Transit Ridership Formulation


1.	 Decision Variables? 
– X1= number of trips made using heavy rail 
– X2= number of trips made using light rail 
– X3= number of trips made using bus rapid transit 

(BRT)

– X4= number of trips made using bus


2.	 Objective Function? 
–	 MAX (Total Ridership) 
–	 Ridership= 400*X1+125*X2+60*X3+40*X4 

3.	 Constraints? 
–	 Cost budget 
–	 Cost=200*X1+80*X2+40*X3+30*X4 

12/31/2003	 Barnhart  1.224J 9 



Transit Ridership Model

MAX ( X * 400 + X * 125 2 + X * 60 3 + X * 40 4 )
1 

s.t.

X * 200 1 + X * 80 2 + X * 40 3 + *X 30 4 ≤ 5000


X 1, X , X , X ≥ 0
2 3 4 

Generalization:

- M= set of modes

- ri = average ridership per trip for mode i
- ci= average cost per trip for mode i

MAX (∑ ri X )
i

i ∈M


t s . .


∑ci X i ≤ 5000

i ∈M 

+ iX i ∈ R , ∈ ∀ M 
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Transit Ridership: Additional Constraints
•	 The agency wants to provide a minimum number of trips 


mi , for each mode i

X 1 ≥ m 1


X 2 ≥ m 2
 Generalization X i ≥ m , ∀i ∈ MiX 3 ≥ m 3


X 4 ≥ m 4


• The agency wants to provide service to a minimum 

number of riders bi , for each mode i .


X r 1 ≥ b 1
1


X r 2 ≥ b 2
2


X r 3 ≥ b 3 
Generalization X r i ≥ b , ∀i ∈ M
i	 i3


X r 4 ≥ b 4
4 
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Additional Constraints in OPL Studio 



Standard Form of a LP

MIN ( x c	 + c 2 x 2 + .... + c x )1 1	 n n 

a 
t s 

11 x1 + a12 x 2 + ..... + a1 n x = b1 

. .


a 
1 n 

21 x 2 + a 22 x 2 + .... + a 2 n x = b 22 n 

....... ..........

a m 1 x 2 + a m 2 x 2 + .... + a mn x 2 n = bm 

x i ≥ 0 
Any LP can be reduced to its standard form: 
•	 Inequality constraints can be transformed into equality by adding 

« slack » variables 
•	 Max problem can be transformed into a MIN problem by reversing 

signs of objective function coefficients 
-•	 Free variables can be eliminated by replacing them by xj

+- xj , where 
-xj

+ and xj are new variables such that xj
+>=0 and xj

->=0 
=> General problem can be transformed into standard form => only need 

to develop methods capable of solving standard form problems. 
12/31/2003 Barnhart  1.224J	 14 



Linearity


•	 In a LP, objective AND constraints MUST BE 
linear 

•	 MAX{x1,x2,…}, xi*yi, |xi|, etc => non-linear if xi 
and yi are variables 
– Sometimes there is a way to convert these types 

of constraints into linear constraints by adding 
some decison variables 

– Examples: 
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Dealing with absolute values

Example


Minimize..5Y + 2 | Z |

s t.

Y Z 
+ ≥  9 n Formulatio 1..


=> OPTION 1: Minimize 5.. Y + 2V


t s . .

|Z|=MAX{Z, -Z} 

V ≥ Z 
Replace by V≥Z and V≥-Z V − ≥ Z 

Y + Z ≥ 9 
=> OPTION 2 

Introduce new variables Z+, Z- such that: Formulation 2.. 
−Minimize 5.. Y + 2Z + + 2ZZ+, Z- ≥ 0 and Z = Z+ - Z­

t s . . We want Z=Z+ or Z=Z-, depending on sign of Z 
−


Then, Z = Z+ - Z- and |Z| = Z+ + Z- Y + Z + − Z ≥ 9

−Z + , Z ≥ 012/31/2003 Barnhart  1.224J 16 



Dealing with minimizing piece-wise linear 

convex cost functions


Example

( )  = c  x  + d , ∀  ∈  −∞  ; a}Cost such that: {c x  x  {3. 3 

{c x  2. 2 x ;( )  = c  x  + d , ∀  ∈{a b  } 
{c x  1. 1 x( )  = c  x  + d , ∀  ∈{b; +∞} 

c3x+d3 

c2x+d2 

c1x+d1 

a b 
x 

What to do? 

= { 3 2 ,• Introduce a new variable T such that: T MAX  c x  + d  c x  + d  c x  + d1}3, 2 1 

• In linear form: T c x  + d3≥ 3 

T c x  + d2≥ 2 

T c x  + d1≥ 1 
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Example


A marketing manager has an advertising budget of 
$150,000. In order to increase automobile sales, the firm is 
considering advertising in newspapers and on TV. The 
more a particular medium is used, the less effective is each 
additional ad. Each newspaper ad costs $1,000 and each 
TV ad costs $10,000. At most 30 newspaper ads and at 
most 15 TV ads can be placed.


No. of Ads New Customers 
1-10 900 

Newspaper 11-20 600 
21-30 300 
1-5 10,000 

TV 6-10 5,000 
11-15 2,000 
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Problem Formulation 1


x 
x 
x 
x 
x 
x N 1 : # of newspaper ads placed between 1-10 

N 2 : # of newspaper ads placed between 11-20 

N 3 : # of newspaper ads placed between 21-30 

T1 : # of TV ads placed between 1-5 

T 2 : # of TV ads placed between 6-10 

T 3 : # of TV ads placed between 11-15 

MAX (900x + 600xN 2 + 300xN 3 + 000 ,10 x + 5000xT 2 + 2000xT 3 )N 1 T 1 

t s . 
* 1000 ( xN 1 + xN 2 + xN 3 ) + * 10000 ( xT 1 + xT 2 + xT 3 ) ≤ 000 ,150 

0 ≤ xN 1 , xN 2 , xN 3 ≤10 
≤ 50 ≤ xT 1 , xT 2 , xT 3 

+ x N 1 , xN 2 , xN 3 , xT 1 , xT 2 , x ∈ ZT 3 

What does this formulation rely on? 
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Alternative Formulation 2

X 

15000 

9000 

N
10 20 

N ∈{ 10,..,1 }=> X = 900N 
N ∈{ 20 ,..,11 }=> X = 10* 900 + 600(N −10) = 3000 + 600N 
N ∈{ 30,..,21 }=> X = 10 * 900 + 10* 600 + 300(N − 20) = 9000 + 300N 

X Therefore = MIN 900{ N 3000, + 600N 9000, + 300N} 

Y 

75000 

T 

50000 

5  10  

T ∈{ 5,..,1 }=> Y = 10000T 
T ∈{ 10,..,6 }=> Y = 5 * 10000 + 5000(T − 5) = 25000 + 5000T 
T ∈{ 15,..,11 }=> Y = 5 * 10000 + 5 * 5000 + 2000(T −10) = 55000 + 2000T 

Y Therefore = MIN 10000{ T 25000 , + 5000T 55000, + } 2000 .. T 

Variables: 

X: number of customers reached via newspaper 

ads


Y: number of customers reached via TV ads 

N: number of newspaper ads 

T: number of TV ads 

X and Y are piecewise linear functions of N and T 
respectively 

Maximize ( X + Y ) 
. . t s 

1000 N + 10000 T ≤ 150000 
X ≤ 900 N 
X ≤ 3000 + 600 N 
X ≤ 9000 + 300 N 
Y ≤ 10000 T 
Y ≤ 25000 + 5000 T 
Y ≤ 55000 + 2000 T 
N ≤ 30 
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Alternative Formulation 3
xN : # of newspaper ads 

xT : # of TV ads placed 

yi : supplementary variables, i=1,2,…,6


MAX (9000 − * 900 y1 +6000 − * 600 y2 +3000 − * 300 y3 +50000 − * 000,10 y4 + 000,25

− * 000,5 y5 + 000,10 − * 000,2 y6


t s .

y1 ≥10 − xN


y4 ≥ 5 − xT


y2 ≥ 20 − xN − y1


y3 ≥ 30 − xN − y1 − y2


y5 ≥10 − xT − y4


y6 ≥15 − xT − y4 − y5


xN ≤ 30


xT ≤15


* 1000 xN + * 10000 xT ≤150000

+ xN , xT ∈Z


y1 , y2 , y3 , y4 , y5 , y6 ≥ 0
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Additional Constraints

How would you model the following?


(1) At most 30 ads can be placed in total
(2) There is a 20% discount for each additional TV ad if 

the number of TV ads exceeds 12 

(1) Add the following constraint:

xN + xT ≤ 30 

(2) Define a new supplementary variable yd and replace y6 
with y’6+yd in previous formulation, and add: 

* 1000 xN + * 10000 xT − * 2000 (3− y' ) ≤ 1500006 

12 − xT − y − y ≤ y4 5 d 

y ≥ 0d 
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Formulating the Model

•	 Multiple ways to develop a model formulation


1- Decide on an inital set of decision variables 
–	 Traditionally letters from the end of the alphabet, use of 

subscripts, ordering of subscripts 
2- Determine objective function: 

– obtainable from problem statement 
– Can be very complex 

3- Determine the constraints: 
–	 Variable-value constraints: non-negativity, binary 


constraints

–	 Capacity constraints, demand constraints, balance flow 

constraints 
–	 Sometimes necessitates introduction of additional variables 
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Solving the LP




Outline

2. Solving linear programs 

– Linear Programs: Forms and Notation 
– Basic/Non-basic variables 
–  Dual Variables  
– Reduced Costs 
– Optimality Conditions 
–  Example  
– Simplex algorithm 
– Sensitivity Analysis 

• Introduction of a new variable 
• Addition of a new constraint 
• Change in the cost coefficient of a non-basic variable 
• Change in the constraint coefficient of a non-basic variable 
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Linear programs: Form and notation


Min (c x + c 2 x + .... + c x )1 1 2 n n Min .c ' x 
t s . 

t s . 
a 
a 11 x 1 + a 12 x 2 + ... + a 1n xn = b 1 

21 x 1 + a 22 x 2 + ... + a 2n x = b 2n Ax = b 
: 

x ≥ 0 a m 1 x 1 + am 2 x 2 + ... + amn xn = bm 

xi ≥ ,0 ∀i • c in an n*1 vector 
• x is an n*1 vector 
• A is an m*n matrix 
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Basic Solutions


• If an LP has an optimal solution, it 
must also have an optimal basic 
solution 
– A basic solution is one in which all but m 

variables take on value zero 
• n - m non-basic variables 

– These  m variables are referred to as basic 
variables (note that basic variables can 
also take on value 0) 
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Dual Variables

• Let  π be the m*1 vector of dual 

variables associated with the m 
constraints 

• Given a basic solution, the dual 
variable value of a constraint can be 
interpreted as the value of relaxing the 
constraint by one unit. 
– If the constraint is not binding, the dual 

value is equal to 0 and relaxing it by one 
unit has no effect on the optimal solution 
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Reduced Costs


The reduced cost of variable xi is: 
ci − A ' ∏ , ori


ci − a1i − ∏ a2i − − ∏ ami ∏
2 ....1 m 

Reduced costs of a variable xi can be viewed 
as an estimate of the change in the objective 
function value achieved by increasing xi by 
one unit. 
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Calculating reduced costs


X1 X2 X3 X4 X5 X6 
Cost(j) 0 0 0 

1 2 2 1 0 0 
2 1 2 0 1 0 
2 2 1 0 0 1 

) 

Dualb
-10 -12 -12 

20  -3.6  
20  -1.6  
20  -1.6  

A(i,j

Red.Cost X(j)= C(j) - A(1,j) * π1 - A(2,j) * π2 - A(3,j) * π3


Red. Cost X(1)= -10 – 1 * (-3.6) – 2 * (-1.6) – 2 * (-1.6) = 0


Red. Cost X(2)= -12 – 2 * (-3.6) – 1 * (-1.6) – 2 * (-1.6) = 0


Red. Cost X(3)= -12 – 2 * (-3.6) – 2 * (-1.6) – 1 * (-1.6) = 0


Red. Cost X(4)= 0 – 1 * (-3.6) – 0 – 0 = 3.6


Red. Cost X(5)= 0 – 0 – 1 * (-1.6) – 0 = 1.6


Red. Cost X(6)= 0 – 0 – 0 – 1 * (-1.6) = 1.6
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Solving the LP


• Many algorithms can be used to solve the LP

• Simplex algorithm (most popular) 

– Searches for an optimal solution by moving from one 
basic solution to another, along the edges of the feasible 
polygon, in direction of cost decrease (Graphically, 
moves from corner to corner) 

• Interior Point Methods (more recent)

– Approaches the situation through the interior of the 

convex polygon 
– Affine Scaling 
– Log Barrier Methods 
– Primal-dual methods 
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The Simplex algorithm for minimization 

problems


1- Compute the reduced costs of all non-basic variables. If 
they are all non-negative, stop. 

2- If not, choose some non-basic variable with negative 
reduced cost. 

3- Identify an active variable to remove from the basis. 
4- Solve for the value of the new set of basic variables. 
5- Solve for the new value of the dual variables. 
6- Return to Step 1 
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Simplex Optimality Conditions (for 

minimization problems)


The current feasible solution x is optimal when: 
•	 The reduced costs of all basic variables equal 0 

–	 Maintained at each iteration of the simplex algorithm 

•	 The reduced costs of all non-basic variables are non-negative


– Not maintained at each iteration of the simplex algorithm 

¾ Dual variables are feasible for the dual problem 

•	 Complementary slackness is satisfied (maintained at each 
iteration of the simplex algorithm) 

• Dual variable value is zero unless its associated constraint 
is binding (has zero slack) 

• Value of the decision variable xi is zero unless its 
associated reduced cost is zero 

– xi is non-zero only if its associated reduced cost is zero. 
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Example*

A company produces 3 products. Each unit of product 1,2, and 3 generate a profit of 
$10, $12 , and $12 respectively. 
Each product has to go through a manufacturing, assembly, and testing phase. The 
company’s resources are such that only 20 hours of manufacturing, 20 hours of 
assembly, and 20 hours of testing are available. Each unit of product 1 has to spend 1 
hr in manufacturing, 2 hrs in assembly, and 2 hrs in testing. Each unit of product 2 
has to spend 2 hrs in manufacturing, 1 hr in assembly, and 2 hrs in testing. Each unit 
of product 3 has to spend 2 hrs in manufacturing, 2 hrs in assembly, and 1 hr in 
testing. Company ABC wants to know how many units of each product it should 
produce, in order to maximize its profit. 

In Standard Form 
)121210( 321 ++ XXXMaximize )121210( 321 −−− XXXMinimize 

. . t s . . t s 

0,, 
2022 
2022 
2022 

321 

321 

321 

321 

≥ 

≤++ 

≤++ 

≤++ 

XXX 
XXX 
XXX 
XXX 

0,,,,, 
2022 
2022 
2022 

654321 

6321 

5321 

4321 

≥ 

=+++ 

=+++ 

=+++ 

XXXXXX 
XXXX 
XXXX 
XXXX 

*Source: Optimization Methods p101 
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In OPL Studio… 
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In OPL With Slack variables 



Example continued

Basic vs. non-basic variables 
•	 3 constraints => (at most) 3 variables are basic variables 
•	 X1, X2, X3 ≥ 0 => X1, X2, X3 are basic 
•	 Non-basic variables => X4, X5, X6 = 0 

Dual Values 
•	 All dual values different from 0 => All constraints are binding 
•	 Dual Value (1) = -3.6 => Relaxing constraint 1 by 1 unit (right hand side equal to 21 

instead of 20) would result in a decrease of 3.6 in the objective value. 
•	 Dual Value (2)= Dual value (3) = -1.6 =>Relaxing constraint 2 or constraint 3 by 1 unit 

would would result in a decrease of  1.6 in the objective value. 

Reduced Costs 
•	 Reduced costs of X1, X2, X3 =0 => reduced costs of basic variables equal 0 
•	 Reduced costs of X4, X5, X6 (non-basic variables) ≥0 
•	 Solution is optimal because all reduced costs (basic + non-basic) are ≥ 0 and we are 

solving a minimization problem 

=> Complementary slackness is satisfied 

Basic Variables 
Value Red. Cost 

X1 4 0 
X2 4 0 
X3 4 0 

Slack Variables Const. 
Value Dual 

X4 0 -3.6 
X5 0 -1.6 
X6 0 -1.6 
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Calculating reduced costs


X1 X2 X3 X4 X5 X6 
Cost(j) 0 0 0 

1 2 2 1 0 0 
2 1 2 0 1 0 
2 2 1 0 0 1 

) 

Dualb
-10 -12 -12 

20  -3.6  
20  -1.6  
20  -1.6  

A(i,j

Red.Cost X(j)= C(j) - A(1,j) * π1 - A(2,j) * π2 - A(3,j) * π3


Red. Cost X(1)= -10 – 1 * (-3.6) – 2 * (-1.6) – 2 * (-1.6) = 0


Red. Cost X(2)= -12 – 2 * (-3.6) – 1 * (-1.6) – 2 * (-1.6) = 0


Red. Cost X(3)= -12 – 2 * (-3.6) – 2 * (-1.6) – 1 * (-1.6) = 0


Red. Cost X(4)= 0 – 1 * (-3.6) – 0 – 0 = 3.6


Red. Cost X(5)= 0 – 0 – 1 * (-1.6) – 0 = 1.6


Red. Cost X(6)= 0 – 0 – 0 – 1 * (-1.6) = 1.6
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SENSITIVITY ANALYSIS
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Local Sensitivity Analysis


•	 How does the objective function value  and 
optimality conditions change when: 
– A new variable is introduced 
– A new inequality is introduced


– The cost coefficient of a non-basic variable 
changes 

– The constraint coefficient of a non-basic 
variable changes 
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Introduction of a new variable


• Feasibility of the current solution is not affected

• Need to check if current solution is still optimal 


(i.e. all reduced costs ≥ 0) 
• Calculate the reduced cost of the new variable 

Cnew −∑ a new i π i, 
i∈M 

– If the reduced cost ≥0, the current solution remains 
optimal 

– If the reduced cost < 0, the current solution is no longer 
optimal. The new variable enters the basis at the next 
iteration of the Simplex method. 
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Simplex Optimality Conditions (for 

minimization problems)


The current feasible solution x is optimal when: 
•	 The reduced costs of all basic variables equal 0 

–	 Maintained at each iteration of the simplex algorithm 

•	 The reduced costs of all non-basic variables are non-negative


– Not maintained at each iteration of the simplex algorithm 

¾ Dual variables are feasible for the dual problem 

•	 Complementary slackness is satisfied (maintained at each 
iteration of the simplex algorithm) 

• Dual variable value is zero unless its associated constraint 
is binding (has zero slack) 

• Value of the decision variable xi is zero unless its 
associated reduced cost is zero 

– xi is non-zero only if its associated reduced cost is zero. 
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Example 1:

•	 Company ABC is thinking about introducing a 

new product. The new product would generate a 
profit of $11/ unit. It would require 2 hours of 
manufacturing, 2 hrs of assembly, and 2 hrs of 
testing. Should Company ABC introduce it? 

•	 Calculate reduced cost of new product:

•	 Red. Cost (New) = -11-2*(-3.6)-2*(-1.6)-2*(-1.6)  

= 2.6 
•	 Red. Cost (New) ≥ 0 => do NOT introduce the 

product 
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Example 2

•	 What if the new product generated a profit of $14 

instead of $11? 
•	 Red. Cost (New) = -14 – 2*(-3.6) –2*(-1.6) – 2*(-

1.6) = - 0.4 
•	 Red. Cost (New) ≤ 0 => Solution could be improved 

by introducing the new product. 
=> Re-solve the problem to get the new optimal 

solution 
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A new inequality constraint is 

added


•	 If current solution satisfies the new constraint, the 
current solution is optimal 

•	 Otherwise, re-solve 
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Change in the cost coefficient of a 

non-basic variable Xv


• Cv becomes Cv+δ, with δ≥0 or  δ≤0 
• Feasibility of current solution not affected 
• Check optimality conditions 
• The only reduced cost affected is that of the


variable for which the coefficient was modified 
– Let  Čv be the current reduced cost 

(– New reduced cost: C +δ −∑ ai ,v π = C +δv i v 
∈M i 

– If Čv ≥ - δ => current solution is still optimal 
– If Čv< - δ => current solution is no longer optimal 
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Example:


Minimize(−5X − X 2 +12 X 3 )1 

t s . . 
3X1 + 2 X 2 + X 3 = 10 
5X1 + 3X 2 + X 4 = 16 
X1, X , X , X ≥ 02 3 4 
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Example: Change in cost coefficient


Current reduced cost of X3=2, π1= 10, π2= -7 

Change cost of X3 from 12 to 11 (δ= -1) 
• 2 ≥ 1 => current solution is optimal 
•	 New Red. Cost (X3)= 11 – 1 * 10 – 0 =1 

Change cost of X3 from 12 to 6 (δ= -6) 
• 2 ≤ 6 => current solution no longer optimal

•	 New Red. Cost (X3) = 6 - 1*10 – 0 = -4 
•	 Red. Cost (X3) ≤ 0 => X3 will become a basic variable => 

Re-solve 
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Change in the constraint coefficient of 

a non-basic variable (the vth variable)


•	 Feasibility conditions not affected 
•	 Check optimality conditions 
•	 Only the reduced cost of the vth column is affected 
•	 Change of the coefficient on the zth row and vth 

column by α (α≥ 0 or α ≤ 0) 
– Current reduced cost= Čv 
– New reduced cost C −∑ a , π − (a , + πα = C 

( 
−απv v i i v z ) z v z 

z i ≠ 

– If α ≤ Čv/πz => current solution remains optimal 
– If α > Čv/πz =>current solution is no longer 

optimal
12/31/2003	 Barnhart  1.224J 50 



Example: Change in constraint 

coefficient of a non-basic variable


Current reduced cost of X3=2; π1= 10, π2= -7


Change coefficient in constraint 1 from 1 to -1 (α= -2)


• -2  ≤ 2/10 => current solution is optimal


•New Red. Cost (X3) = 12 – (-1) * 10  = 22 

Change coefficient in constraint 1 from 1 to 2 (α=1)


• 1 > 2/10 => current solution no longer optimal 

•New Red. Cost (X3) = 12 - 2*10 – 0 = -8 

•Red. Cost (X3) <=0 => X3 will become a basic variable => Re­
solve 
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