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Deterministic Queuing
Applied to Traffic Lights

¢ Here we introduce the concept of
deterministic queuing at an
introductory level and then apply
this concept to setting of traffic
lights.



Deterministic Queuing

Deterministic Queuing

In the first situation, we consider A(t), the arrival
rate, and pu(t), the departure rate, as

deterministic.
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Deterministic Queuing

Deterministic Arrival and Departure Rates

(continued)
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Queuing Diagram
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Another Case

¢ Now, the numbers were selected
to make this simple; at the end of
four hours the system is empty.
The queue dissipated exactly at
the end of four hours. But for
example, suppose vehicles arrive
at the rate of 1,250/hour from t=3
to t=4.



Another Queuing Diagram
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Computing Total Delay

Area Between Input and Output Curves
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Choosing Capacity

u (t) = 2000
u () = 1500
u (t) = 500

CLASS DISCUSSION
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A Traffic Light as a
Deterministic Queue

Service Rate and Arrival Rate at Traffic Light
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Queuing Diagram per Traffic
Light
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Queue Stability

All the traffic must be dissipated during the
green cycle.

If R + G = C (the cycle time),
then (R +t)) = ut,

Rearranging t,= _AR
u-A

If we define A = p (the “traffic intensity”),
U

Then tO = _pR
1-p

For stability t, <G =C-R.
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Delay at a Traffic Signal --
Considering One Direction

D= _JR?
2(1-p)

The total delay per cycle is d

d=_D =_ R?
AC  2C(1 - p)




Two Direction Analysis of
Traffic Light

Flows in East-West and North-South Directions
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D,= AR}

2(1 - /O1)
where p, = 4,
U

We can write similar expressions for
D,, D;, D,. We want to minimize
D; , the total delay, where

Dr=D;+D,+D3+D,
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Choosing an Optimum

Remembering that
R2 - R1
R,=R,=(C-R))
we want to minimize D; where
Dr= AR? .\ AR 2 \ A4(C-R_)? s A,(C-R.)?
2(1-p) 2(1-p) 2(1-p) 2(1-p,)

To obtain the optimal R,, we differentiate the
expression for total delay with respect to R, (the
only unknown) and set that equal to zero.

dDr _ ARy, AR, A(CR) ACR) _
dR, = 1-p, 1-p, 1-p, 1-p,
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Try a Special Case
Ay = A= Ag= Ay
Therefore, p, = p,= p3= py.

The result, then, is

R,=C ,R, =C
2 2

This makes sense. If the flows are equal, we would
expect the optimal design choice is to split the
cycle in half in the two directions.
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¢ The text goes through some further
mathematical derivations of other
cases for the interested student.
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